ترغب بنشر مسار تعليمي؟ اضغط هنا

Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials

77   0   0.0 ( 0 )
 نشر من قبل Richard G. Hennig
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Materials Project crystal structure database has been searched for materials possessing layered motifs in their crystal structures using a topology-scaling algorithm. The algorithm identifies and measures the sizes of bonded atomic clusters in a structures unit cell, and determines their scaling with cell size. The search yielded 826 stable layered materials, which are considered as candidates for the formation of two-dimensional monolayers via exfoliation. Density-functional theory calculates the exfoliation energy of each material and 681 monolayers are found to exhibit exfoliation energies below those of certain already-extant two-dimensional materials, indicating the possibility of exfoliating them from bulk phases. The crystal structures of these two-dimensional materials provide templates for future theoretical searches of stable two-dimensional materials. The optimized structures and other data for all 826 monolayers are provided at https://materialsweb.org .



قيم البحث

اقرأ أيضاً

We present a scheme to controllably improve the accuracy of tight-binding Hamiltonian matrices derived by projecting the solutions of plane-wave ab initio calculations on atomic orbital basis sets. By systematically increasing the completeness of the basis set of atomic orbitals, we are able to optimize the quality of the band structure interpolation over wide energy ranges including unoccupied states. This methodology is applied to the case of interlayer and image states, which appear several eV above the Fermi level in materials with large interstitial regions or surfaces such as graphite and graphene. Due to their spatial localization in the empty regions inside or outside of the system, these states have been inaccessible to traditional tight-binding models and even to ab initio calculations with atom-centered basis functions.
Two-dimensional (2D) layered materials offer intriguing possibilities for novel physics and applications. Before any attempt at exploring the materials space in a systematic fashion, or combining insights from theory, computation and experiment, a fo rmal description of information about an assembly of arbitrary composition is required. Here, we introduce a domain-generic notation that is used to describe the space of 2D layered materials from monolayers to twisted assemblies of arbitrary composition, existent or not-yet-fabricated. The notation corresponds to a theoretical materials concept of stepwise assembly of layered structures using a sequence of rotation, vertical stacking, and other operations on individual 2D layers. Its scope is demonstrated with a number of example structures using common single-layer materials as building blocks. This work overall aims to contribute to the systematic codification, capture and transfer of materials knowledge in the area of 2D layered materials.
With the examples of the C $K$-edge in graphite and the B $K$-edge in hexagonal BN, we demonstrate the impact of vibrational coupling and lattice distortions on the X-ray absorption near-edge structure (XANES) in 2D layered materials. Theoretical XAN ES spectra are obtained by solving the Bethe-Salpeter equation of many-body perturbation theory, including excitonic effects through the correlated motion of core-hole and excited electron. We show that accounting for zero-point motion is important for the interpretation and understanding of the measured X-ray absorption fine structure in both materials, in particular for describing the $sigma^*$-peak structure.
In this work, we expand the set of known layered compounds to include ionic layered materials, which are well known for superconducting, thermoelectric, and battery applications. Focusing on known ternary compounds from the ICSD, we screen for ionic layered structures by expanding upon our previously developed algorithm for identification of van der Waals (vdW) layered structures, thus identifying over 1,500 ionic layered compounds. Since vdW layered structures can be chemically mutated to form ionic layered structures, we have developed a methodology to structurally link binary vdW to ternary ionic layered materials. We perform an in-depth analysis of similarities and differences between these two classes of layered systems and assess the interplay between layer geometry and bond strength with a study of the elastic anisotropy. We observe a rich variety of anisotropic behavior in which the layering direction alone is not a simple predictor of elastic anisotropy. Our results enable discovery of new layered materials through intercalation or de- intercalation of vdW or ionic layered systems, respectively, as well as lay the groundwork for studies of anisotropic transport phenomena such as sound propagation or lattice thermal conductivity.
In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride (hBN), low-loss infrared-active phonon-polaritons exhibit hyperbolic behavior for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides (TMDs), reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near field optical microscopy (SNOM). Here, we review recent progress in state-of-the-art experiments, survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures-of-merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا