ﻻ يوجد ملخص باللغة العربية
We propose and analyze two distinct routes toward realizing interacting symmetry-protected topological (SPT) phases via periodic driving. First, we demonstrate that a driven transverse-field Ising model can be used to engineer complex interactions which enable the emulation of an equilibrium SPT phase. This phase remains stable only within a parametric time scale controlled by the driving frequency, beyond which its topological features break down. To overcome this issue, we consider an alternate route based upon realizing an intrinsically Floquet SPT phase that does not have any equilibrium analog. In both cases, we show that disorder, leading to many-body localization, prevents runaway heating and enables the observation of coherent quantum dynamics at high energy densities. Furthermore, we clarify the distinction between the equilibrium and Floquet SPT phases by identifying a unique micromotion-based entanglement spectrum signature of the latter. Finally, we propose a unifying implementation in a one-dimensional chain of Rydberg-dressed atoms and show that protected edge modes are observable on realistic experimental time scales.
We show that a Wilson-type discretization of the Gross-Neveu model, a fermionic N-flavor quantum field theory displaying asymptotic freedom and chiral symmetry breaking, can serve as a playground to explore correlated symmetry-protected phases of mat
Floquet symmetry protected topological (FSPT) phases are non-equilibrium topological phases enabled by time-periodic driving. FSPT phases of 1d chains of bosons, spins, or qubits host dynamically protected edge states that can store quantum informati
Universal driving protocol for symmetry-protected Floquet topological phasesWe propose a universal driving protocol for the realization of symmetry-protected topological phases in $2+1$ dimensional Floquet systems. Our proposal is based on the theore
We explore adiabatic pumping in the presence of periodic drive, finding a new phase in which the topologically quantized pumped quantity is energy rather than charge. The topological invariant is given by the winding number of the micromotion with re
We investigate an unconventional symmetry in time-periodically driven systems, the Floquet dynamical symmetry (FDS). Unlike the usual symmetries, the FDS gives symmetry sectors that are equidistant in the Floquet spectrum and protects quantum coheren