ﻻ يوجد ملخص باللغة العربية
Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tuneable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurement of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton- polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons.
Compact and electrically controllable on-chip sources of indistinguishable photons are desirable for the development of integrated quantum technologies. We demonstrate that two quantum dot light emitting diodes (LEDs) in close proximity on a single c
We study a system of a transition metal dichalcogenide (TMD) monolayer placed in an optical resonator, where strong light-matter coupling between excitons and photons is achieved. We present quantitative theory of the nonlinear optical response for e
Electrons confined in Si quantum dots possess orbital, spin, and valley degrees of freedom (d.o.f.). We perform Landau-Zener-Stuckelberg-Majorana (LZSM) interferometry on a Si double quantum dot that is strongly coupled to a microwave cavity to probe
It is well known that stacking domains form in moire superlattices due to the competition between the interlayer van der Waals forces and intralayer elastic forces, which can be recognized as polar domains due to the local spontaneous polarization in
Using optical diffraction, we study the mechanical vibrations of an array of micromechanical resonators. Implementing tunable electrostatic coupling between the suspended, doubly-clamped Au beams leads to the formation of a band of collective vibrati