ﻻ يوجد ملخص باللغة العربية
Intrusion detection is only a starting step in securing IT infrastructure. Prediction of intrusions is the next step to provide an active defense against incoming attacks. Current intrusion prediction methods focus mainly on prediction of either intrusion type or intrusion category and do not use or provide contextual information such as source and target IP address. In addition most of them are dependant on domain knowledge and specific scenario knowledge. The proposed algorithm employs a bag-of-words model together with a hidden Markov model which not depend on specific domain knowledge. Since this algorithm depends on a training process it is adaptable to different conditions. A key advantage of the proposed algorithm is the inclusion of contextual data such as source IP address, destination IP range, alert type and alert category in its prediction, which is crucial for an eventual response. Experiments conducted using a public data set generated over 2500 alert predictions and achieved accuracy of 81% and 77% for single step and five step predictions respectively for prediction of the next alert cluster. It also achieved an accuracy of prediction of 95% and 92% for single step and five step predictions respectively for prediction of the next alert category. The proposed methods achieved a prediction accuracy improvement of 5% for alert category over existing variable length Markov chain intrusion prediction methods, while providing more information for a possible defense.
Network intrusion detection sensors are usually built around low level models of network traffic. This means that their output is of a similarly low level and as a consequence, is difficult to analyze. Intrusion alert correlation is the task of autom
Attack graphs (AG) are used to assess pathways availed by cyber adversaries to penetrate a network. State-of-the-art approaches for AG generation focus mostly on deriving dependencies between system vulnerabilities based on network scans and expert k
This paper proposes an intrusion detection and prediction system based on uncertain and imprecise inference networks and its implementation. Giving a historic of sessions, it is about proposing a method of supervised learning doubled of a classifier
We use Hidden Markov Models to motivate a quantitative compositional semantics for noninterference-based security with iteration, including a refinement- or implements relation that compares two programs with respect to their information leakage; and
With the growing amount of cyber threats, the need for development of high-assurance cyber systems is becoming increasingly important. The objective of this paper is to address the challenges of modeling and detecting sophisticated network attacks, s