ﻻ يوجد ملخص باللغة العربية
In this work, we present numerical studies of fixed-stress iterative coupling for solving flow and geomechanics with propagating fractures in a porous medium. Specifically, fracture propagations are described by employing a phase-field approach. The extension to fixed-stress splitting to propagating phase-field fractures and systematic investigation of its properties are important enhancements to existing studies. Moreover, we provide an accurate computation of the fracture opening using level-set approaches and a subsequent finite element interpolation of the width. The latter enters as fracture permeability into the pressure diffraction problem which is crucial for fluid filled fractures. Our developments are substantiated with several numerical tests that include comparisons of computational cost for iterative coupling and nonlinear and linear iterations as well as convergence studies in space and time.
This paper concerns the analysis and implementation of a novel iterative staggered scheme for quasi-static brittle fracture propagation models, where the fracture evolution is tracked by a phase field variable. The model we consider is a two-field va
We compare the accuracy, convergence rate and computational cost of eigenerosion (EE) and phase-field (PF) methods. For purposes of comparison, we specifically consider the standard test case of a center-crack panel loaded in biaxial tension and asse
Mineral precipitation and dissolution processes in a porous medium can alter the structure of the medium at the scale of pores. Such changes make numerical simulations a challenging task as the geometry of the pores changes in time in an apriori unkn
We consider a phase-field fracture propagation model, which consists of two (nonlinear) coupled partial differential equations. The first equation describes the displacement evolution, and the second is a smoothed indicator variable, describing the c
A new fast algebraic method for obtaining an $mathcal{H}^2$-approximation of a matrix from its entries is presented. The main idea behind the method is based on the nested representation and the maximum-volume principle to select submatrices in low-r