ﻻ يوجد ملخص باللغة العربية
We consider open quantum walks on a graph, and consider the random variables defined as the passage time and number of visits to a given point of the graph. We study in particular the probability that the passage time is finite, the expectation of that passage time, and the expectation of the number of visits, and discuss the notion of recurrence for open quantum walks. We also study exit times and exit probabilities from a finite domain, and use them to solve Dirichlet problems and to determine harmonic measures. We consider in particular the case of irreducible open quantum walks. The results we obtain extend those for classical Markov chains.
In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the nowadays widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or mov
We study a stochastic process $X_t$ related to the Bessel and the Rayleigh processes, with various applications in physics, chemistry, biology, economics, finance and other fields. The stochastic differential equation is $dX_t = (nD/X_t) dt + sqrt{2D
In this paper we prove a duality relation between coalescence times and exit points in last-passage percolation models with exponential weights. As a consequence, we get lower bounds for coalescence times with scaling exponent 3/2, and we relate its
Let $mathbb{hat{E}}$ be the upper expectation of a weakly compact but non-dominated family $mathcal{P}$ of probability measures. Assume that $Y$ is a $d$-dimensional $mathcal{P}$-semimartingale under $mathbb{hat{E}}$. Given an open set $Qsubsetmathbb
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-cal