The largest eigenvalue of a network provides understanding to various dynamical as well as stability properties of the underlying system. We investigate an interplay of inhibition and multiplexing on the largest eigenvalue statistics of networks. Using numerical experiments, we demonstrate that presence of the inhibitory coupling may lead to a very different behaviour of the largest eigenvalue statistics of multiplex networks than those of the isolated networks depending upon network architecture of the individual layer. We demonstrate that there is a transition from the Weibull to the Gumbel or to the Frechet distribution as networks are multiplexed. Furthermore, for denser networks, there is a convergence to the Gumbel distribution as network size increases indicating higher stability of larger systems.