ترغب بنشر مسار تعليمي؟ اضغط هنا

First Study of Combined Blazar Light Curves with FACT and HAWC

97   0   0.0 ( 0 )
 نشر من قبل Daniela Dorner
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For studying variable sources like blazars, it is crucial to achieve unbiased monitoring, either with dedicated telescopes in pointing mode or survey instruments. At TeV energies, the High Altitude Water Cherenkov (HAWC) observatory monitors approximately two thirds of the sky every day. It uses the water Cherenkov technique, which provides an excellent duty cycle independent of weather and season. The First G-APD Cherenkov Telescope (FACT) monitors a small sample of sources with better sensitivity, using the imaging air Cherenkov technique. Thanks to its camera with silicon-based photosensors, FACT features an excellent detector performance and stability and extends its observations to times with strong moonlight, increasing the duty cycle compared to other imaging air Cherenkov telescopes. As FACT and HAWC have overlapping energy ranges, a joint study can exploit the longer daily coverage given that the observatories locations are offset by 5.3 hours. Furthermore, the better sensitivity of FACT adds a finer resolution of features on hour-long time scales, while the continuous duty cycle of HAWC ensures evenly sampled long-term coverage. Thus, the two instruments complement each other to provide a more complete picture of blazar variability. In this presentation, the first joint study of light curves from the two instruments will be shown, correlating long-term measurements with daily sampling between air and water Cherenkov telescopes. The presented results focus on the study of the variability of the bright blazars Mrk 421 and Mrk 501 during the last two years featuring various flaring activities.



قيم البحث

اقرأ أيضاً

88 - Daniela Dorner 2017
Probing the high energy emission processes of blazars through their variability relies crucially on long-term monitoring. We present unprecedented light curves from unbiased observations of very high energy fluxes from the blazars Mrk 421 and Mrk 501 based on a joint analysis of data from the First G-APD Cherenkov Telescope (FACT) and the High Altitude Water Cherenkov (HAWC) Observatory. Thanks to an offset of 5.3 hours of the geographic locations, a complementary coverage of up to 12 hours of observation per day allows us to track variability on time scales of hours to days in more detail than with single-instrument analyses. Complementary features, such as better sensitivity thanks to a lower energy threshold with FACT and more regular coverage throughout the year with HAWC, provide valuable cross checks and extensions to the individual analyses. Daily flux comparisons for both Mrk 421 and Mrk 501 show largely correlated variations with a few significant exceptions. These deviations between measurements can be explained through fast variability within a few hours and will be discussed in detail.
110 - Maria R. Drout 2010
We present detailed optical photometry for 25 Type Ibc supernovae within dapprox150 Mpc obtained with the robotic Palomar 60-inch telescope in 2004-2007. This study represents the first uniform, systematic, and statistical sample of multi-band SNe Ib c light curves available to date. We correct the light curves for host galaxy extinction using a new technique based on the photometric color evolution, namely, we show that the (V-R) color of extinction-corrected SNe Ibc at tapprox10 days after V-band maximum is tightly distributed, (V-R)=0.26+-0.06 mag. Using this technique, we find that SNe Ibc typically suffer from significant host galaxy extinction, E(B-V)approx0.4 mag. A comparison of the extinction-corrected light curves for SNe Ib and Ic reveals that they are statistically indistinguishable, both in luminosity and decline rate. We report peak absolute magnitudes of M_R=-17.9+-0.9 mag and M_R=-18.3+-0.6 mag for SNe Ib and Ic, respectively. Focusing on the broad-lined SNe Ic, we find that they are more luminous than the normal SNe Ibc sample, M_R=-19.0+-1.1 mag, with a probability of only 1.6% that they are drawn from the same population of explosions. By comparing the peak absolute magnitudes of SNe Ic-BL with those inferred for local engine-driven explosions (GRB-SN 1998bw, XRF-SN 2006aj, and SN2009bb) we find a 25% probability that they are drawn from the SNe Ic-BL population. Finally, we fit analytic models to the light-curves to derive typical Ni-56 masses of M_Ni approx0.2 and 0.5 M_sun for SNe Ibc and SNe Ic-BL, respectively. With reasonable assumptions for the photospheric velocities, we extract kinetic energy and ejecta mass values of M_ej approx 2 M_sun and E_Kapprox1e+51 erg for SNe Ibc, while for SNe Ic-BL we find higher values, M_ejapprox5 M_sun and E_Kapprox1e+52 erg. We discuss the implications for the progenitors of SNe Ibc and their relation to engine-driven explosions [ABRIDGED].
Blazars are among the most powerful extragalactic objects, as a sub-class of active galactic nuclei. They launch relativistic jets and their emitted radiation shows strong variability across the entire electro-magnetic spectrum. The mechanisms produc ing the variability are still controversial and different models have been proposed to explain the observed variations in multi-frequency blazar light curves.We investigate the capabilities of the classical shock-in-jet model to explain and reconstruct the observed evolution of flares in the turnover frequency turnover flux density plane and their frequency-dependent light curve parameters. With a detailed parameter space study we provide the framework for future, detailed comparisons of observed flare signatures with the shock-in-jet scenario. Based on the shock model we compute synthetic single-dish light curves at different radio frequencies (2.6 to 345 GHz) and for different physical conditions in a conical jet (e.g. magnetic field geometry and Doppler factor). From those we extract the slopes of the different energy loss stages within the $ u_mathrm{m}$-$S_mathrm{m}$ plane and deduce the frequency-dependence of different light curve parameters such as flare amplitude, time scale and cross-band delays. The evolution of the Doppler factor along the jet has the largest influence on the evolution of the flare and on the frequency-dependent light curve parameters. The synchrotron stage can be hidden in the Compton or in the adiabatic stage, depending mainly on the evolution of the Doppler factor, which makes it difficult to detect its signature in observations. In addition, we show that the time lags between different frequencies can be used as an efficient tool to better constrain the physical properties of these objects.
The search for Dark Matter (DM) has great potential to reveal physics beyond the Standard Model. As such, searches for evidence of DM particles are being carried out using a wide range of techniques, such as direct searches for DM particles, searches for DM produced with colliders, and indirect searches for the Standard Model annihilation products of DM. Dwarf spheroidal galaxies (dSphs) are excellent targets for indirect Dark Matter searches due to their relatively high DM content and negligible expected astrophysical background. A collaboration was formed to maximise the sensitivity of DM searches towards dSphs by combining for the first time dSph data from three imaging air Cherenkov telescope (IACT) arrays: HESS, MAGIC, and VERITAS; the Fermi-LAT satellite, and the water Cherenkov detector HAWC. Due to the diverse nature of the instruments involved, each experiment will analyse their individual datasets from multiple targets and then the results will be combined at the likelihood level. For consistency of the likelihoods across the five experiments, a common approach is used to treat the astrophysical factor (J-Factor) for each target and an agreed set of annihilation channels are considered. We also agree on a common statistical approach and treatment of instrumental systematic uncertainties. The results are presented in terms of constraints on the velocity-weighted cross section for DM self-annihilation as a function of the DM particle mass.
Only five binary systems have been found to emit at TeV energies. Each of these systems is composed of a massive O or B type star and a compact object (black hole or a pulsar). The type of compact object and the origin of the gamma-ray emission is un known for most of these systems. Extending spectral observations to higher energies can help disentangle the nature of the compact object as well as the particle acceleration mechanisms present. Interestingly, the TeV emission from these systems does not always coincide with their emission in GeV or X-ray, which is how many such systems have been originally discovered. Increased coverage of these systems may allow HAWC to see precisely when in the orbit the TeV emission begins and ends. The HAWC Observatory detects TeV gamma-rays with high sensitivity, covering over two-thirds of the overhead sky every day. Applying a stacking method to known TeV binary systems can help HAWC enhance the signal from TeV binaries above the steady background from other sources in the galaxy. We will present results from this stacking analysis using 760 days of HAWC data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا