ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation and Evolution of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks in the Laboratory

93   0   0.0 ( 0 )
 نشر من قبل Derek Schaeffer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Shocks act to convert incoming supersonic flows to heat, and in collisionless plasmas the shock layer forms on kinetic plasma scales through collective electromagnetic effects. These collisionless shocks have been observed in many space and astrophysical systems [Smith 1975, Smith 1980, Burlaga 2008, Sulaiman 2015], and are believed to accelerate particles, including cosmic rays, to extremely high energies [Kazanas 1986, Loeb 2000, Bamba 2003, Masters 2013, Ackermann 2013]. Of particular importance are the class of high-Mach number, supercritical shocks [Balogh 2013] ($M_Agtrsim4$), which must reflect significant numbers of particles back into the upstream to accommodate entropy production, and in doing so seed proposed particle acceleration mechanisms [Blandford 1978, McClements 2001, Caprioli 2014, Matsumoto 2015]. Here we present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number $M_{ms}approx12$. Particle-in-cell simulations constrained by experimental data show in detail the shock formation, separate reflection dynamics of C$^{+6}$ and H$^{+1}$ ions in the multi-species ambient plasma, and density and magnetic field compressions and overshoots in the shock layer. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.



قيم البحث

اقرأ أيضاً

The kinetic theory of collisionless electrostatic shocks resulting from the collision of plasma slabs with different temperatures and densities is presented. The theoretical results are confirmed by self-consistent particle-in-cell simulations, revea ling the formation and stable propagation of electrostatic shocks with very high Mach numbers ($M gg 10$), well above the predictions of the classical theories for electrostatic shocks.
The existence and properties of low Mach-number ($M gtrsim 1$) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.
Strong shocks in collisionless plasmas, such as supernovae shocks and shocks driven by coronal mass ejections, are known to be a primary source of energetic particles. Due to their different mass per charge ratio, the interaction of heavy ions with t he shock layer differs from that of protons, and injection of these ions into acceleration processes is a challenge. Here we show the first direct observational evidence of magnetic reflection of alpha particles from a high Mach number quasi-perpendicular shock using in-situ spacecraft measurements. The intense magnetic amplification at the shock front associated with nonstationarity modulates the trajectory of alpha particles, some of which travel back upstream as they gyrate in the enhanced magnetic field and experience further acceleration in the upstream region. Our results in particular highlight the important role of high magnetic amplification in seeding heavy ions into the energization processes at nonstationary reforming shocks.
120 - Shikha Bhadoria , Naveen Kumar , 2017
Influence of the plasma collisions on the laser-driven collisionless shock formation and subsequent ion acceleration is studied on the basis of two different collisional algorithms and their implementations in two well-known particle-in-cell codes EP OCH and SMILEI. In this setup, an ultra-intense incident laser pulse generates hot-electrons in a thick target, launching an electrostatic shock at the laser-plasma interface while also pushing the interface through the hole-boring effect. We observe, to varying degrees, the weakening of the space-charge effects due to collisions and improvements ($ge 10%$) in the energy spectra of quasi-monoenergetic ions in both PIC codes EPOCH and SMILEI. These results establish the `collisionlessness of the collisionless shocks in laboratory astrophysics experiments.
Collisionless shocks are common features in space and astrophysical systems where supersonic plasma flows interact, such as in the solar wind, the heliopause, and supernova remnants. Recent experimental capabilities and diagnostics allow detailed lab oratory investigations of high-Mach-number shocks, which therefore can become a valuable way to understand shock dynamics in various astrophysical environments. Using 2D particle-in-cell simulations with a Coulomb binary collision operator, we demonstrate the mechanism for generation of energetic electrons and experimental requirements for detecting this process in the laboratory high-Mach-number collisionless shocks. We show through a parameter study that electron acceleration by magnetized collisionless shocks is feasible in laboratory experiments with laser-driven expanding plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا