ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatio-temporal extreme events in a laser with a saturable absorber

193   0   0.0 ( 0 )
 نشر من قبل Cristina Rimoldi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study extreme events occurring in the transverse $(x,y)$ section of the field emitted by a broad-area semiconductor laser with a saturable absorber. The spatio-temporal events on which we perform the statistical analysis are identified as maxima of the field intensity in the 3D space $(x,y,t)$. We identify regions in the parameter space where extreme events are more likely to occur and we study the connection of those extreme events with the cavity solitons that are known to exist in the same system, both stationary and self-pulsing.



قيم البحث

اقرأ أيضاً

We demonstrate that the intrinsic properties of monolayer graphene allow it to act as a more effective saturable absorber for mode-locking fiber lasers compared to multilayer graphene. The absorption of monolayer graphene can be saturated at lower ex citation intensity compared to multilayer graphene, graphene with wrinkle-like defects, and functionalized graphene. Monolayer graphene has a remarkable large modulation depth of 95.3%, whereas the modulation depth of multilayer graphene is greatly reduced due to nonsaturable absorption and scattering loss. Picoseconds ultrafast laser pulse (1.23 ps) can be generated using monolayer graphene as saturable absorber. Due to the ultrafast relaxation time, larger modulation depth and lower scattering loss of monolayer graphene, it performs better than multilayer graphene in terms of pulse shaping ability, pulse stability and output energy.
Generally speaking, the self-sweeping effect relies on the dynamical grating formed in a gain fiber. Here, the normal self-sweeping was generated in a pump-free ytterbium-doped fiber which serves as a fiber saturable absorber and is introduced to the laser cavity by a circulator in this experiment. The sweeping rate and the sweeping range alter as usual, both of which can be controlled by the pump power. Further, a new self-pulse signal is observed and discussed in this work, which shows the difference of the self-sweeping effects between active fiber and fiber saturable absorber.
We theoretically present a design of self-starting operation of microcombs based on laser-cavity solitons in a system composed of a micro-resonator nested in and coupled to an amplifying laser cavity. We demonstrate that it is possible to engineer th e modulational-instability gain of the systems zero state to allow the start-up with a well-defined number of robust solitons. The approach can be implemented by using the system parameters, such as the cavity length mismatch and the gain shape, to control the number and repetition rate of the generated solitons. Because the setting does not require saturation of the gain, the results offer an alternative to standard techniques that provide laser mode-locking.
We report a straightforward method to control main spatio-temporal couplings in a CPA laser chain system using a specially designed chromatic doublet in a divergent beam configuration. The centering of the doublet allows for the control of the spatia l chirp of the CPA laser chain, while its longitudinal position in the divergent beam enables the control of the amount of longitudinal chromatism in a wide dynamic range. The performance of this technique is evaluated by measuring main spatio-temporal couplings with a simple method, based on an ultrafast pulse shaper, which allows for a selection of narrow windows of the spectrum.
We present a numerical study of the collective dynamics in a population of coupled excitable lasers with saturable absorber. At variance with previous studies where real-valued (lossy) coupling was considered, we focus here on the purely imaginary co upling (evanescent wave coupling). We show that evanescently coupled excitable lasers synchronize in a more efficient way compared to the lossy coupled ones. Furthermore we show that out-of-diagonal disorder-induced localization of excitability takes place for imaginary coupling too, but it can be frustrated by nonvanishing linewidth enhancement factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا