ﻻ يوجد ملخص باللغة العربية
We merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG) to define a new many-body approach for the comprehensive description of ground and excited states of closed and open-shell nuclei. Building on the key advantages of the two methods---the decoupling of excitations at the many-body level in the IM-SRG and the access to arbitrary nuclei, eigenstates, and observables in the NCSM---their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. We present applications in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. The efficiency and rapid convergence of the new approach make it ideally suited for ab initio studies of the complete spectroscopy of nuclei up into the medium-mass regime.
We introduce a hybrid many-body approach that combines the flexibility of the No-Core Shell Model (NCSM) with the efficiency of Multi-Configurational Perturbation Theory (MCPT) to compute ground- and excited-state energies in arbitrary open-shell nuc
Nuclear structure and reaction theory is undergoing a major renaissance with advances in many-body methods, strong interactions with greatly improved links to Quantum Chromodynamics (QCD), the advent of high performance computing, and improved comput
In the present work, we have reported shell model results for open shell nuclei Ne, Mg and Si isotopes with $10 leq N leq 20$ in $sd$-shell model space. We have performed calculations in $sd$ shell with two $ab~initio$ approaches: in-medium similarit
We present an ab initio approach for the description of collective excitations and transition strength distributions of arbitrary nuclei up into the sd-shell that based on the No-Core Shell Model in combination with the Lanczos strength-function meth
The existence of multi-neutron systems has always been a debatable question. Indeed, both inter-nucleon correlations and a large continuum coupling occur in these states. We then employ the ab-initio no-core Gamow shell model to calculate the resonan