ﻻ يوجد ملخص باللغة العربية
This survey gives an overview of several fundamental algebraic constructions which arise in the study of splines. Splines play a key role in approximation theory, geometric modeling, and numerical analysis, their properties depend on combinatorics, topology, and geometry of a simplicial or polyhedral subdivision of a region in R^k, and are often quite subtle. We describe four algebraic techniques which are useful in the study of splines: homology, graded algebra, localization, and inverse systems. Our goal is to give a hands-on introduction to the methods, and illustrate them with concrete examples in the context of splines. We highlight progress made with these methods, such as a formula for the third coefficient of the polynomial giving the dimension of the spline space in high degree, much of which builds on pioneering work of Schumaker, Alfeld-Schumaker, and Billera. The objects appearing here may be computed using the Macaulay2 software system.
In this paper, we attempt to develop the Quillen Suslin theory for the algebraic fundamental group of a ring. We give a surjective group homomorphism from the algebraic fundamental group of the field of the real numbers to the group of integers. At t
Algebraic models for the reconstruction problem in X-ray computed tomography (CT) provide a flexible framework that applies to many measurement geometries. For large-scale problems we need to use iterative solvers, and we need stopping rules for thes
In recent contributions, algebraic multigrid methods have been designed and studied from the viewpoint of the spectral complementarity. In this note we focus our efforts on specific applications and, more precisely, on large linear systems arising fr
This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form $-{rm div}(a abla u)=f$ where $a=exp(b)$ and $b$ is a Gaussian random field. The approximant of the solution $u$ is an $n$-term polyno
The RKHS bandit problem (also called kernelized multi-armed bandit problem) is an online optimization problem of non-linear functions with noisy feedback. Although the problem has been extensively studied, there are unsatisfactory results for some pr