ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement distribution and quantum discord

94   0   0.0 ( 0 )
 نشر من قبل Alexander Streltsov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.



قيم البحث

اقرأ أيضاً

Dissimilar notions of quantum correlations have been established, each being motivated through particular applications in quantum information science and each competing for being recognized as the most relevant measure of quantumness. In this contrib ution, we experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord. We certify the presence of such quantum correlations via negativities in the regularized two-mode Glauber-Sudarshan function. Our data show compatibility with an incoherent mixture of orthonormal photon-number states, ruling out quantum coherence and other kinds of quantum resources. By construction, the quantumness of our state is robust against dephasing, thus requiring fewer experimental resources to ensure stability. In addition, we theoretically show how multimode entanglement can be activated based on the generated, nonentangled state. Therefore, we implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
Quantum correlations represent a fundamental tool for studies ranging from basic science to quantum technologies. Different non-classical correlations have been identified and studied, as entanglement and discord. In this Paper we explore experimenta lly the rich geometry of polarization Bell-diagonal states. By taking advantage of the statistical method of generation, the values of entanglement and discord along different trajectories in the space of the parameters of density matrix have been measured. The effects of sudden death of entanglement and complete freeze of discord were investigated in order to detect the domains with different domination of one type of quantum correlation against to other. A geometric interpretation for each considered phenomena is addressed. The observed good agreement between experiment and theory for all investigated trajectories ensures the reliability of this method.
197 - Zhe Guan , Huan He , Yong-Jian Han 2013
Fernando Galve emph{et al.} $[Phys. Rev. Lett. textbf{110}, 010501 (2013)]$ introduced discording power for a two-qubit unitary gate to evaluate its capability to produce quantum discord, and found that a $pi/8$ gate has maximal discording power. Thi s work analyzes the entangling power of a two-qubit unitary gate, which reflects its ability to generate quantum entanglement in another way. Based on the renowned Cartan decomposition of two-qubit unitary gates, we show that the magic power of the $pi/8$ gate produces maximal entanglement for a general value of purities for two-qubit states.
Quantum correlations represent a fundamental tool for studies ranging from basic science to quantum technologies. Different non-classical correlations have been identified and studied, as entanglement and discord. In view of future applications in th is letter we explore experimentally the rich geometry of Bell-diagonal states, measuring the values of entanglement and discord and highlighting the effect of decoherence in real experiments.
Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in qua ntum information processing. However, it has recently been pointed out that quantum entanglement cannot describe all the nonclassicality in the correlations. Thus the study of quantum correlations in separable states attracts widely attentions. Herein, we experimentally investigate the quantum correlations of separable thermal states in terms of quantum discord. The sudden change of quantum discord is observed, which captures ambiguously the critical point associated with the behavior of Hamiltonian. Our results display the potential applications of quantum correlations in studying the fundamental properties of quantum system, such as quantum criticality of non-zero temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا