ﻻ يوجد ملخص باللغة العربية
Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.
Dissimilar notions of quantum correlations have been established, each being motivated through particular applications in quantum information science and each competing for being recognized as the most relevant measure of quantumness. In this contrib
Quantum correlations represent a fundamental tool for studies ranging from basic science to quantum technologies. Different non-classical correlations have been identified and studied, as entanglement and discord. In this Paper we explore experimenta
Fernando Galve emph{et al.} $[Phys. Rev. Lett. textbf{110}, 010501 (2013)]$ introduced discording power for a two-qubit unitary gate to evaluate its capability to produce quantum discord, and found that a $pi/8$ gate has maximal discording power. Thi
Quantum correlations represent a fundamental tool for studies ranging from basic science to quantum technologies. Different non-classical correlations have been identified and studied, as entanglement and discord. In view of future applications in th
Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in qua