ﻻ يوجد ملخص باللغة العربية
We derive a formula for the unramified Brauer group of a general class of rationally connected fourfolds birational to conic bundles over smooth threefolds. We produce new examples of conic bundles over P^3 where this formula applies and which have nontrivial unramified Brauer group. The construction uses the theory of contact surfaces and, at least implicitly, matrix factorizations and symmetric arithmetic Cohen--Macaulay sheaves, as well as the geometry of special arrangements of rational curves in P^2. We also prove the existence of universally CH_0-trivial resolutions for the general class of conic bundle fourfolds we consider. Using the degeneration method, we thus produce new families of rationally connected fourfolds whose very general member is not stably rational.
We establish a formula for computing the unramified Brauer group of tame conic bundle threefolds in characteristic 2. The formula depends on the arrangement and residue double covers of the discriminant components, the latter being governed by Artin-
A conic bundle is a contraction $Xto Z$ between normal varieties of relative dimension $1$ such that $-K_X$ is relatively ample. We prove a conjecture of Shokurov which predicts that, if $Xto Z$ is a conic bundle such that $X$ has canonical singulari
We study the groups of biholomorphic and bimeromorphic automorphisms of conic bundles over certain compact complex manifolds of algebraic dimension zero.
A group $G$ is called Jordan if there is a positive integer $J=J_G$ such that every finite subgroup $mathcal{B}$ of $G$ contains a commutative subgroup $mathcal{A}subset mathcal{B}$ such that $mathcal{A}$ is normal in $mathcal{B}$ and the index $[mat
Classifying elements of the Brauer group of a variety X over a p-adic field according to the p-adic accuracy needed to evaluate them gives a filtration on Br X. We show that, on the p-torsion, this filtration coincides with a modified version of that