ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of the Inclusive Neutrino and Antineutrino Charged Current Cross Sections in MINERvA Using the Low-$ u$ Flux Method

285   0   0.0 ( 0 )
 نشر من قبل Jeffrey Nelson
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an {em in situ} prediction of the shape of the flux as a function of neutrino energy from 2--50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy ($ u$) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-$ u$ flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. The cross section measurements presented are the most precise measurements to date below 5 GeV.



قيم البحث

اقرأ أيضاً

We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and rever sed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy range $E_{ u} <$ 6GeV.
The ArgoNeuT collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beamline at Fermilab, the results are reported in terms of outgoing muon angle a nd momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, $0^circ$$<theta_mu$$<36^circ$ and 0$<P_mu$$<25$ GeV/c. Along with confirming the viability of liquid argon time projection chamber technology for neutrino detection, the measurements allow tests of low energy neutrino scattering models important for interpreting results from long baseline neutrino oscillation experiments designed to investigate CP violation and the orientation of the neutrino mass hierarchy.
We present the first measurement of the single-differential $ u_e + bar{ u}_e$ charged-current inclusive cross sections on argon in electron or positron energy and in electron or positron scattering cosine over the full angular range. Data were colle cted using the MicroBooNE liquid argon time projection chamber located off-axis from the Fermilab Neutrinos at the Main Injector beam over an exposure of $2.0times10^{20}$ protons on target. The signal definition includes a 60 MeV threshold on the $ u_e$ or $bar{ u}_e$ energy and a 120 MeV threshold on the electron or positron energy. The measured total and differential cross sections are found to be in agreement with the GENIE, NuWro, and GiBUU neutrino generators.
We present a measurement of the combined $ u_e$ + $bar{ u}_e$ flux-averaged charged-current inclusive cross section on argon using data from the MicroBooNE liquid argon time projection chamber (LArTPC) at Fermilab. Using the off-axis flux from the Nu MI beam, MicroBooNE has reconstructed 214 candidate $ u_e$ + $bar{ u}_e$ interactions with an estimated exposure of 2.4$times10^{20}$ protons on target. Given the estimated purity of 38.6%, this implies the observation of 80 $ u_e$ + $bar{ u}_e$ events in argon, the largest such sample to date. The analysis includes the first demonstration of a fully automated application of a dE/dx-based particle discrimination technique of electron and photon induced showers in a LArTPC neutrino detector. We measure the $ u_e + bar{ u}_e$ flux-averaged charged-current total cross section to be ${6.84pm!1.51~textrm{(stat.)}pm!2.33~textrm{(sys.)}!times!10^{-39}~textrm{cm}^{2}/~textrm{nucleon}}$, for neutrino energies above 250 MeV and an average neutrino flux energy of 905 MeV when this threshold is applied. The measurement is sensitive to neutrino events where the final state electron momentum is above 48 MeV/c, includes the entire angular phase space of the electron, and is in agreement with the theoretical predictions from texttt{GENIE} and texttt{NuWro}. This measurement is also the first demonstration of electron neutrino reconstruction in a surface LArTPC in the presence of cosmic ray backgrounds, which will be a crucial task for surface experiments like those that comprise the Short-Baseline Neutrino (SBN) Program at Fermilab.
MINERvA reports inclusive charged-current cross sections for muon neutrinos on hydrocarbon in the NuMI beamline. We measured the double-differential cross section in terms of the longitudinal and transverse muon momenta, as well as the single-differe ntial cross sections in those variables. The data used in this analysis correspond to an exposure of $3.34 times 10^{20}$ protons on target with a peak neutrino energy of approximately 3.5 GeV. Measurements are compared to the GENIE, NuWro and GiBUU neutrino cross-section predictions, as well as a version of GENIE modified to produce better agreement with prior exclusive MINERvA measurements. None of the models or variants were able to successfully reproduce the data across the entire phase space, which includes areas dominated by each interaction channel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا