ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton-proton correlations in distinguishing the two-proton emission mechanism of $^{23}$Al and $^{22}$Mg

138   0   0.0 ( 0 )
 نشر من قبل Yu-Gang Ma
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The proton-proton momentum correlation functions ($C_{pp}(q)$) for kinematically complete decay channels of $^{23}$Al $rightarrow$ p + p + $^{21}$Na and $^{22}$Mg $rightarrow$ p + p + $^{20}$Ne have been measured at the RIKEN RI Beam Factory. From the very different correlation strength of $C_{pp}(q)$ for $^{23}$Al and $^{22}$Mg, the source size and emission time information were extracted from the $C_{pp}(q)$ data by assuming a Gaussian source profile in the correlation function calculation code (CRAB). The results indicated that the mechanism of two-proton emission from $^{23}$Al was mainly sequential emission, while that of $^{22}$Mg was mainly three-body simultaneous emission. By combining our earlier results of the two-proton relative momentum and the opening angle, it is pointed out that the mechanism of two-proton emission could be distinguished clearly.



قيم البحث

اقرأ أيضاً

219 - Y.G. Ma , D.Q. Fang , X.Y. Sun 2015
Two-proton relative momentum ($q_{pp}$) and opening angle ($theta_{pp}$) distributions from the three-body decay of two excited proton-rich nuclei, namely $^{23}$Al $rightarrow$ p + p + $^{21}$Na and $^{22}$Mg $rightarrow$ p + p + $^{20}$Ne, have bee n measured with the projectile fragment separator (RIPS) at the RIKEN RI Beam Factory. An evident peak at $q_{pp}sim20$ MeV/c as well as a peak in $theta_{pp}$ around 30$^circ$ are seen in the two-proton break-up channel from a highly-excited $^{22}$Mg. In contrast, such peaks are absent for the $^{23}$Al case. It is concluded that the two-proton emission mechanism of excited $^{22}$Mg is quite different from the $^{23}$Al case, with the former having a favorable diproton emission component at a highly excited state and the latter dominated by the sequential decay process.
Proton-proton correlations were observed for the two-proton decays of the ground states of $^{19}$Mg and $^{16}$Ne. The trajectories of the respective decay products, $^{17}$Ne+p+p and $^{14}$O+p+p, were measured by using a tracking technique with mi crostrip detectors. These data were used to reconstruct the angular correlations of fragments projected on planes transverse to the precursor momenta. The measured three-particle correlations reflect a genuine three-body decay mechanism and allowed us to obtain spectroscopic information on the precursors with valence protons in the $sd$ shell.
The radionuclide $^{22}$Na is a target of $gamma$-ray astronomy searches, predicted to be produced during thermonuclear runaways driving classical novae. The $^{22}$Na(p,$gamma$)$^{23}$Mg reaction is the main destruction channel of $^{22}$Na during a nova, hence, its rate is needed to accurately predict the $^{22}$Na yield. However, experimental determinations of the resonance strengths have led to inconsistent results. In this work, we report a measurement of the branching ratios of the $^{23}$Al $beta$-delayed protons, as a probe of the key 204--keV (center-of-mass) $^{22}$Na(p,$gamma$)$^{23}$Mg resonance strength. We report a factor of 5 lower branching ratio compared to the most recent literature value. The variation in $^{22}$Na yield due to nuclear data inconsistencies was assessed using a series of hydrodynamic nova outburst simulations and has increased to a factor of 3.8, corresponding to a factor of $sim$2 uncertainty in the maximum detectability distance. This is the first reported scientific measurement using the Gaseous Detector with Germanium Tagging (GADGET) system.
152 - D. Q. Fang , W. Guo , C. W. Ma 2007
The longitudinal momentum distribution (P_{//}) of fragments after one-proton removal from ^{23} Al and reaction cross sections (sigma_R) for ^{23,24} Al on carbon target at 74A MeV have been measured. The ^{23,24} Al ions were produced through pro jectile fragmentation of 135 A MeV ^{28} Si primary beam using RIPS fragment separator at RIKEN. P_{//} is measured by a direct time-of-flight (TOF) technique, while sigma_R is determined using a transmission method. An enhancement in sigma_R is observed for ^{23} Al compared with ^{24} Al. The P_{//} for ^{22} Mg fragments from ^{23} Al breakup has been obtained for the first time. FWHM of the distributions has been determined to be 232 pm 28 MeV/c. The experimental data are discussed by using Few-Body Glauber model. Analysis of P_{//} demonstrates a dominant d-wave configuration for the valence proton in ground state of ^{23} Al, indicating that ^{23} Al is not a proton halo nucleus.
This paper reports results from a study of the reaction pp->pK0Sigma+ at beam momenta of p_{beam} = 2950, 3059, and 3200 MeV/c (excess energies of epsilon= 126, 161, and 206 MeV). Total cross sections were determined for all energies; a set of differ ential cross sections (Dalitz plots; invariant mass spectra of all two-body subsystems; angular distributions of all final state particles; distributions in helicity and Jackson frames) are presented for epsilon= 161 MeV. The total cross sections are proportional to the volume of available three-body phase-space indicating that the transition matrix element does not change significantly in this range of excess energies. It is concluded from the differential data that the reaction proceeds dominantly via the N(1710)P_{11} and/or N(1720)P_{13} resonance(s); N(1650)S_{11} and Delta(1600)P_{33} could also contribute.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا