ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring Person-to-person Proximity Using WiFi Signals

75   0   0.0 ( 0 )
 نشر من قبل Piotr Sapiezynski
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Todays societies are enveloped in an ever-growing telecommunication infrastructure. This infrastructure offers important opportunities for sensing and recording a multitude of human behaviors. Human mobility patterns are a prominent example of such a behavior which has been studied based on cell phone towers, Bluetooth beacons, and WiFi networks as proxies for location. However, while mobility is an important aspect of human behavior, understanding complex social systems requires studying not only the movement of individuals, but also their interactions. Sensing social interactions on a large scale is a technical challenge and many commonly used approaches---including RFID badges or Bluetooth scanning---offer only limited scalability. Here we show that it is possible, in a scalable and robust way, to accurately infer person-to-person physical proximity from the lists of WiFi access points measured by smartphones carried by the two individuals. Based on a longitudinal dataset of approximately 800 participants with ground-truth interactions collected over a year, we show that our model performs better than the current state-of-the-art. Our results demonstrate the value of WiFi signals in social sensing as well as potential threats to privacy that they imply.



قيم البحث

اقرأ أيضاً

We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of h uman mobility, it is possible to assign location to WiFi access points based on a very small number of GPS samples and then use these access points as location beacons. Using just one GPS observation per day per person allows us to estimate the location of, and subsequently use, WiFi access points to account for 80% of mobility across a population. These results reveal a great opportunity for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant privacy implications of such side-channel location tracking.
185 - Umar Iqbal , Juergen Gall 2016
Despite of the recent success of neural networks for human pose estimation, current approaches are limited to pose estimation of a single person and cannot handle humans in groups or crowds. In this work, we propose a method that estimates the poses of multiple persons in an image in which a person can be occluded by another person or might be truncated. To this end, we consider multi-person pose estimation as a joint-to-person association problem. We construct a fully connected graph from a set of detected joint candidates in an image and resolve the joint-to-person association and outlier detection using integer linear programming. Since solving joint-to-person association jointly for all persons in an image is an NP-hard problem and even approximations are expensive, we solve the problem locally for each person. On the challenging MPII Human Pose Dataset for multiple persons, our approach achieves the accuracy of a state-of-the-art method, but it is 6,000 to 19,000 times faster.
We introduce an approach for pre-training egocentric video models using large-scale third-person video datasets. Learning from purely egocentric data is limited by low dataset scale and diversity, while using purely exocentric (third-person) data int roduces a large domain mismatch. Our idea is to discover latent signals in third-person video that are predictive of key egocentric-specific properties. Incorporating these signals as knowledge distillation losses during pre-training results in models that benefit from both the scale and diversity of third-person video data, as well as representations that capture salient egocentric properties. Our experiments show that our Ego-Exo framework can be seamlessly integrated into standard video models; it outperforms all baselines when fine-tuned for egocentric activity recognition, achieving state-of-the-art results on Charades-Ego and EPIC-Kitchens-100.
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs a similiarity value indicating whether the two input images represent the same person or not. Based on deep convolutional neural networks, our approach first learns the discriminative semantic representation with the semantic-component-aware features for persons and then employs the Pyramid Matching Module to match the common semantic-components of persons, which is robust to the variation of spatial scales and misalignment of locations posed by viewpoint changes. The above two processes are jointly optimized via a unified end-to-end deep learning scheme. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our approach against the state-of-the-art approaches, especially on the rank-1 recognition rate.
108 - Dan Jia , Bastian Leibe 2021
In this preliminary work we attempt to apply submanifold sparse convolution to the task of 3D person detection. In particular, we present Person-MinkUNet, a single-stage 3D person detection network based on Minkowski Engine with U-Net architecture. T he network achieves a 76.4% average precision (AP) on the JRDB 3D detection benchmark.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا