ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraint-Preserving Scheme for Maxwells Equations

57   0   0.0 ( 0 )
 نشر من قبل Takuya Tsuchiya
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the discretized Maxwells equations using the discrete variational derivative method (DVDM), calculate the evolution equation of the constraint, and confirm that the equation is satisfied at the discrete level. Numerical simulations showed that the results obtained by the DVDM are superior to those obtained by the Crank-Nicolson scheme. In addition, we study the two types of the discretized Maxwells equations by the DVDM and conclude that if the evolution equation of the constraint is not conserved at the discrete level, then the numerical results are also unstable.



قيم البحث

اقرأ أيضاً

We propose a new numerical scheme of evolution for the Einstein equations using the discrete variational derivative method (DVDM). We derive the discrete evolution equation of the constraint using this scheme and show the constraint preserves in the discrete level. In addition, to confirm the numerical stability using this scheme, we perform some numerical simulations by discretized equations with the Crank-Nicolson scheme and with the new scheme, and we find that the new discretized equations have better stability than that of the Crank-Nicolson scheme.
We present a previously unexplored forward-mode differentiation method for Maxwells equations, with applications in the field of sensitivity analysis. This approach yields exact gradients and is similar to the popular adjoint variable method, but pro vides a significant improvement in both memory and speed scaling for problems involving several output parameters, as we analyze in the context of finite-difference time-domain (FDTD) simulations. Furthermore, it provides an exact alternative to numerical derivative methods, based on finite-difference approximations. To demonstrate the usefulness of the method, we perform sensitivity analysis of two problems. First we compute how the spatial near-field intensity distribution of a scatterer changes with respect to its dielectric constant. Then, we compute how the spectral power and coupling efficiency of a surface grating coupler changes with respect to its fill factor.
We present a positive and asymptotic preserving numerical scheme for solving linear kinetic, transport equations that relax to a diffusive equation in the limit of infinite scattering. The proposed scheme is developed using a standard spectral angula r discretization and a classical micro-macro decomposition. The three main ingredients are a semi-implicit temporal discretization, a dedicated finite difference spatial discretization, and realizability limiters in the angular discretization. Under mild assumptions on the initial condition and time step, the scheme becomes a consistent numerical discretization for the limiting diffusion equation when the scattering cross-section tends to infinity. The scheme also preserves positivity of the particle concentration on the space-time mesh and therefore fixes a common defect of spectral angular discretizations. The scheme is tested on the well-known line source benchmark problem with the usual uniform material medium as well as a medium composed from different materials that are arranged in a checkerboard pattern. We also report the observed order of space-time accuracy of the proposed scheme.
We study the essential spectrum of operator pencils associated with anisotropic Maxwell equations, with permittivity $varepsilon$, permeability $mu$ and conductivity $sigma$, on finitely connected unbounded domains. The main result is that the essent ial spectrum of the Maxwell pencil is the union of two sets: namely, the spectrum of the pencil $mathrm{div}((omegavarepsilon + i sigma) abla,cdot,)$, and the essential spectrum of the Maxwell pencil with constant coefficients. We expect the analysis to be of more general interest and to open avenues to investigation of other questions concerning Maxwells and related systems.
Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term. Using this equivalence and a 3+1 decomposition of the theory it has been shown that metric f(R) gravity admits a well-posed initial value problem. However, it has not been proven that the 3+1 evolution equations of metric f(R) gravity preserve the (hamiltonian and momentum) constraints. In this paper we show that this is indeed the case. In addition, we show that the mathematical form of the constraint propagation equations in BD-equilavent f(R) gravity and in f(R) gravity in both the Jordan and Einstein frames, is exactly the same as in the standard ADM 3+1 decomposition of GR. Finally, we point out that current numerical relativity codes can incorporate the 3+1 evolution equations of metric f(R) gravity by modifying the stress-energy tensor and adding an additional scalar field evolution equation. We hope that this work will serve as a starting point for relativists to develop fully dynamical codes for valid f(R) models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا