ﻻ يوجد ملخص باللغة العربية
In his 2011 paper, Teleman proved that a cohomological field theory on the moduli space $overline{mathcal{M}}_{g,n}$ of stable complex curves is uniquely determined by its restriction to the smooth part $mathcal{M}_{g,n}$, provided that the underlying Frobenius algebra is semisimple. This leads to a classification of all semisimple cohomological field theories. The present paper, the outcome of the authors masters thesis, presents Telemans proof following his original paper. The author claims no originality: the main motivation has been to keep the exposition as complete and self-contained as possible.
We develop the deformation theory of cohomological field theories (CohFTs), which is done as a special case of a general deformation theory of morphisms of modular operads. This leads us to introduce two new natural extensions of the notion of a CohF
A method of constructing Cohomological Field Theories (CohFTs) with unit using minimal classes on the moduli spaces of curves is developed. As a simple consequence, CohFTs with unit are found which take values outside of the tautological cohomology o
We introduce and study several new topological operads that should be regarded as nonsymmetric analogues of the operads of little 2-disks, framed little 2-disks, and Deligne-Mumford compactifications of moduli spaces of genus zero curves with marked
We investigate the cohomology rings of regular semisimple Hessenberg varieties whose Hessenberg functions are of the form $h=(h(1),ndots,n)$ in Lie type $A_{n-1}$. The main result of this paper gives an explicit presentation of the cohomology rings i
We study cohomological obstructions to the existence of global conserved quantities. In particular, we show that, if a given local variational problem is supposed to admit global solutions, certain cohomology classes cannot appear as obstructions. Vi