ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bump in the Blue Axion Isocurvature Spectrum

116   0   0.0 ( 0 )
 نشر من قبل Daniel J. H. Chung
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blue axion isocurvature perturbations are both theoretically well-motivated and interesting from a detectability perspective. These power spectra generically have a break from the blue region to a flat region. Previous investigations of the power spectra were analytic, which left a gap in the predicted spectrum in the break region due to the non-applicability of the used analytic techniques. We therefore compute the isocurvature spectrum numerically for an explicit supersymmetric axion model. We find a bump that enhances the isocurvature signal for this class of scenarios. A fitting function of three parameters is constructed that fits the spectrum well for the particular axion model we study. This fitting function should be useful for blue isocurvature signal hunting in data and making experimental sensitivity forecasts.



قيم البحث

اقرأ أيضاً

It is known that if the Peccei-Quinn symmetry breaking field is displaced from its minimum during inflation, the axion isocurvature spectrum is generically strongly blue tilted with a break transition to a flat spectrum. We fit this spectrum (incorpo rated into the vanilla $Lambda$-CDM cosmological model) to the Planck and BOSS DR11 data and find a mild hint for the presence of axionic blue-tilted isocurvature perturbations. We find the best fit parameter region is consistent with all of the dark matter being composed of QCD axions in the context of inflationary cosmology with an expansion rate of order $10^{8}$ GeV, the axion decay constant of order $10^{13}$ GeV, and the initial misalignment angle of order unity. Intriguingly, isocurvature with a spectral break may at least partially explain the low-$ell$ vs. high-$ell$ anomalies seen in the CMB data.
We investigate constraints on the spectral index of primordial gravitational waves (GWs), paying particular attention to a blue-tilted spectrum. Such constraints can be used to test a certain class of models of the early Universe. We investigate obse rvational bounds from LIGO+Virgo, pulsar timing and big bang nucleosynthesis, taking into account the suppression of the amplitude at high frequencies due to reheating after inflation and also late-time entropy production. Constraints on the spectral index are presented by changing values of parameters such as reheating temperatures and the amount of entropy produced at late time. We also consider constraints under the general modeling approach which can approximately describe various scenarios of the early Universe. We show that the constraints on the blue spectral tilt strongly depend on the underlying assumption and, in some cases, a highly blue-tilted spectrum can still be allowed.
We discuss the possibility of explaining the recent NANOGrav results by inflationary gravitational waves (IGWs) with a blue-tilted primordial spectrum. Although such IGWs can account for the NANOGrav signal without contradicting the upper bound on th e tensor-to-scalar ratio at the cosmic microwave background scale, the predicted spectrum is in strong tension with the upper bound on the amplitude of the stochastic gravitational wave background by big-bang nucleosynthesis (BBN) and the second LIGO-Virgo observation run. However, the thermal history of the Universe, such as reheating and late-time entropy production, affects the spectral shape of IGWs at high frequencies and permits evading the upper bounds. We show that, for the standard reheating scenario, when the reheating temperature is relatively low, a blue tensor spectrum can explain the recent NANOGrav signal without contradicting the BBN and the LIGO-Virgo constraints. We further find that, when one considers a late-time entropy production, the NANOGrav signal can be explained even for an instant reheating scenario.
We study the angular bispectrum of local type arising from the (possibly correlated) combination of a primordial adiabatic mode with an isocurvature one. Generically, this bispectrum can be decomposed into six elementary bispectra. We estimate how pr ecisely CMB data, including polarization, can enable us to measure or constrain the six corresponding amplitudes, considering separately the four types of isocurvature modes (CDM, baryon, neutrino density, neutrino velocity). Finally, we discuss how the model-independent constraints on the bispectrum can be combined to get constraints on the parameters of multiple-field inflation models.
Light axions ($m_a lesssim 10^{-10}$ eV) can form dense clouds around rapidly rotating astrophysical black holes via a mechanism known as rotational superradiance. The coupling between axions and photons induces a parametric resonance, arising from t he stimulated decay of the axion cloud, which can rapidly convert regions of large axion number densities into an enormous flux of low-energy photons. In this work we consider the phenomenological implications of a superradiant axion cloud undergoing resonant decay. We show that the low energy photons produced from such events will be absorbed over cosmologically short distances, potentially inducing massive shockwaves that heat and ionize the IGM over Mpc scales. These shockwaves may leave observable imprints in the form of anisotropic spectral distortions or inhomogeneous features in the optical depth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا