ﻻ يوجد ملخص باللغة العربية
Using high resolution hydrodynamical cosmological simulations, we conduct a comprehensive study of how tidal stripping removes dark matter and stars from galaxies. We find that dark matter is always stripped far more significantly than the stars -- galaxies that lose $sim$80$%$ of their dark matter, typically lose only 10$%$ of their stars. This is because the dark matter halo is initially much more extended than the stars. As such, we find the stellar-to-halo size-ratio (measured using r$_{rm{eff}}$/r$_{rm{vir}}$) is a key parameter controlling the relative amounts of dark matter and stellar stripping. We use simple fitting formulae to measure the relation between the fraction of bound dark matter and fraction of bound stars. We measure a negligible dependence on cluster mass or galaxy mass. Therefore these formulae have general applicability in cosmological simulations, and are ideal to improve stellar stripping recipes in semi-analytical models, and/or to estimate the impact that tidal stripping would have on galaxies when only their halo mass evolution is known.
In the standard Lambda-CDM paradigm, dwarf galaxies are expected to be dark-matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local
The shallow faint-end slope of the galaxy mass function is usually reproduced in $Lambda$CDM galaxy formation models by assuming that the fraction of baryons that turns into stars drops steeply with decreasing halo mass and essentially vanishes in ha
The location of dark-matter free, tidal dwarf galaxies (TDGs) in the baryonic Tully Fisher (bTF) diagram has been used to test cosmological scenarios, leading to various and controversial results. Using new high-resolution 3D spectroscopic data, we r
Gravitational lensing observations of massive X-ray clusters imply a steep characteristic density profile marked by a central concentration of dark matter. The observed mass fraction within a projected radius of 150 kpc is twice that found in state-o
We examine two extreme models for the build-up of the stellar component of luminous elliptical galaxies. In one case, we assume the build-up of stars is dissipational, with centrally accreted gas radiating away its orbital and thermal energy; the dar