ﻻ يوجد ملخص باللغة العربية
We study pairs of Engel structures on four-manifolds whose intersection has constant rank one and which define the same even contact structure, but induce different orientations on it. We establish a correspondence between such pairs of Engel structures and a class of weakly hyperbolic flows. This correspondence is analogous to the correspondence between bi-contact structures and projectively or conformally Anosov flows on three-manifolds found by Eliashberg--Thurston and by Mitsumatsu.
This article introduces the notion of a loose family of Engel structures and shows that two such families are Engel homotopic if and only if they are formally homotopic. This implies a complete h-principle when some auxiliary data is fixed. As a coro
Let $Q$ be a closed manifold admitting a locally-free action of a compact Lie group $G$. In this paper we study the properties of geodesic flows on $Q$ given by Riemannian metrics which are invariant by such an action. In particular, we will be inter
Building on work of Stolz, we prove for integers $0 le d le 3$ and $k>232$ that the boundaries of $(k-1)$-connected, almost closed $(2k+d)$-manifolds also bound parallelizable manifolds. Away from finitely many dimensions, this settles longstanding q
We prove that in dimension 3 every nondegenerate contact form is carried by a broken book decomposition. As an application we get that if M is a closed irreducible oriented 3-manifold that is not a graph manifold, for example a hyperbolic manifold, t
We establish a new criterion for a compatible almost complex structure on a symplectic four-manifold to be integrable and hence Kahler. Our main theorem shows that the existence of three linearly independent closed J-anti-invariant two-forms implies