ﻻ يوجد ملخص باللغة العربية
We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of $1/3$. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, $ N= 2$. The constant term does not agree with the expected topological entropy.
We study lattice wave functions obtained from the SU(2)$_1$ Wess-Zumino-Witten conformal field theory. Following Moore and Reads construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields.
We conjecture that the counting of the levels in the orbital entanglement spectra (OES) of finite-sized Laughlin Fractional Quantum Hall (FQH) droplets at filling $ u=1/m$ is described by the Haldane statistics of particles in a box of finite size. T
We construct a quantum algorithm that creates the Laughlin state for an arbitrary number of particles $n$ in the case of filling fraction one. This quantum circuit is efficient since it only uses $n(n-1)/2$ local qudit gates and its depth scales as $
We study geometric aspects of the Laughlin fractional quantum Hall (FQH) states using a description of these states in terms of a matrix quantum mechanics model known as the Chern-Simons matrix model (CSMM). This model was proposed by Polychronakos a
The entanglement entropy (EE) can measure the entanglement between a spatial subregion and its complement, which provides key information about quantum states. Here, rather than focusing on specific regions, we study how the entanglement entropy chan