ترغب بنشر مسار تعليمي؟ اضغط هنا

Perrons method for nonlocal fully nonlinear equations

176   0   0.0 ( 0 )
 نشر من قبل Chenchen Mou
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Chenchen Mou




اسأل ChatGPT حول البحث

This paper is concerned with existence of viscosity solutions of non-translation invariant nonlocal fully nonlinear equations. We construct a discontinuous viscosity solution of such nonlocal equation by Perrons method. If the equation is uniformly elliptic in the sense of cite{SS}, we prove the discontinuous viscosity solution is Holder continuous and thus it is a viscosity solution.



قيم البحث

اقرأ أيضاً

128 - Hongjie Dong , Tianling Jin , 2017
We obtain Dini and Schauder type estimates for concave fully nonlinear nonlocal parabolic equations of order $sigmain (0,2)$ with rough and non-symmetric kernels, and drift terms. We also study such linear equations with only measurable coefficients in the time variable, and obtain Dini type estimates in the spacial variable. This is a continuation of the work [10, 11] by the first and last authors.
132 - Xiuxiong Chen , Weiyong He 2018
In this paper we consider a class of fully nonlinear equations which cover the equation introduced by S. Donaldson a decade ago and the equation introduced by Gursky-Streets recently. We solve the equation with uniform weak $C^2$ estimates, which hold for degenerate case.
185 - N.V. Krylov 2021
We present some results concerning the solvability of linear elliptic equations in bounded domains with the main coefficients almost in VMO, the drift and the free terms in Morrey classes containing $L_{d}$, and bounded zeroth order coefficient. We p rove that the second-order derivatives of solutions are in a local Morrey class containing $W^{2}_{p,loc}$. Actually, the exposition is given for fully nonlinear equations and encompasses the above mentioned results, which are new even if the main part of the equation is just the Laplacian.
We prove a boundary Harnack principle in Lipschitz domains with small constant for fully nonlinear and $p$-Laplace type equations with a right hand side, as well as for the Laplace equation on nontangentially accessible domains under extra conditions . The approach is completely new and gives a systematic approach for proving similar results for a variety of equations and geometries.
In this paper we provide a characterization of second order fully nonlinear CR invariant equations on the Heisenberg group, which is the analogue in the CR setting of the result proved in the Euclidean setting by A. Li and the first author (2003). We also prove a comparison principle for solutions of second order fully nonlinear CR invariant equations defined on bounded domains of the Heisenberg group and a comparison principle for solutions of a family of second order fully nonlinear equations on a punctured ball.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا