ﻻ يوجد ملخص باللغة العربية
In this paper, we coin the term Policy Enforcement as a Service (PEPS), which enables the provision of innovative inter-layer and inter-domain Access Control. We leverage the architecture of Software-Defined-Network (SDN) to introduce a common network-level enforcement point, which is made available to a range of access control systems. With our PEPS model, it is possible to have a `defense in depth protection model and drop unsuccessful access requests before engaging the data provider (e.g. a database system). Moreover, the current implementation of access control within the `trusted perimeter of an organization is no longer a restriction so that the potential for novel, distributed and cooperative security services can be realized. We conduct an analysis of the security requirements and technical challenges for implementing Policy Enforcement as a Service. To illustrate the benefits of our proposal in practice, we include a report on our prototype PEPS-enabled location-based access control.
Personally identifiable information (PII) can find its way into cyberspace through various channels, and many potential sources can leak such information. Data sharing (e.g. cross-agency data sharing) for machine learning and analytics is one of the
Aiming at the privacy preservation of dynamic Web service composition, this paper proposes a SDN-based runtime security enforcement approach for privacy preservation of dynamic Web service composition. The main idea of this approach is that the owner
Noninterference offers a rigorous end-to-end guarantee for secure propagation of information. However, real-world systems almost always involve security requirements that change during program execution, making noninterference inapplicable. Prior wor
To investigate the status quo of SEAndroid policy customization, we propose SEPAL, a universal tool to automatically retrieve and examine the customized policy rules. SEPAL applies the NLP technique and employs and trains a wide&deep model to quickly
It is widely acknowledged that the forthcoming 5G architecture will be highly heterogeneous and deployed with a high degree of density. These changes over the current 4G bring many challenges on how to achieve an efficient operation from the network