ﻻ يوجد ملخص باللغة العربية
We investigated the transient relaxation of a Discontinuous Shear Thickening suspension of cornstarch in water. We performed 2 types of relaxation experiments starting from a steady shear in a parallel plate rheometer, followed by either stopping the top plate rotation and measuring the transient torque relaxation, or removing the torque on the plate and measuring the transient tool rotation. We found that at low weight fraction $phi_{eff}<58.8pm0.4%$, the suspensions exhibited a relaxation behavior consistent with a generalized Newtonian fluid. However, for larger weight fraction $58.8% < phi_{eff} < 61.0%$, near the liquid-solid transition $phi_c=61.0pm0.7%$, we found relaxation behaviors different from the generalized Newtonian model. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening. In this range the relaxation time was the same in both stress and rate controlled experiments, rather than the viscosity calculated from the relaxation time which is expected to be intrinsic material parameter in the generalized Newtonian model. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be up to $10^4$, and extrapolations diverge in the limit of $phi_c$ as the generalized Newtonian prediction approaches 0. At the highest weight fractions, the relaxation time scales were measured to be on the order of $sim 1$ s. The fact that this timescale is resolvable by the naked eye may be important to understanding some of the dynamic phenomenon commonly observed in these systems. We also showed that using the critical shear rate $dotgamma_c$ at the onset of shear thickening to characterize the effective weight fraction can more precisely characterize material properties near the critical point $phi_c$, allowing us to resolve this transition so close to $phi_c$.
Shear thickening appears as an increase of the viscosity of a dense suspension with the shear rate, sometimes sudden and violent at high volume fraction. Its origin for noncolloidal suspension with non-negligible inertial effects is still debated. He
Discontinuous shear thickening (DST) observed in many dense athermal suspensions has proven difficult to understand and to reproduce by numerical simulation. By introducing a numerical scheme including both relevant hydrodynamic interactions and gran
Dynamic particle-scale numerical simulations are used to show that the shear thickening observed in dense colloidal, or Brownian, suspensions is of a similar nature to that observed in non-colloidal suspensions, i.e., a stress-induced transition from
A consensus is emerging that discontinuous shear thickening (DST) in dense suspensions marks a transition from a flow state where particles remain well separated by lubrication layers, to one dominated by frictional contacts. We show here that reason
We report direct measurements of spatially resolved surface stresses of a dense suspension during large amplitude oscillatory shear (LAOS) in the discontinuous shear thickening regime using boundary stress microscopy. Consistent with previous studies