ﻻ يوجد ملخص باللغة العربية
Many coordination phenomena are based on a synchronisation process, whose global behaviour emerges from the interactions among the individual parts. Often in Nature, such self-organising mechanism allows the system to behave as a whole and thus grounding its very first existence, or expected functioning, on such process. There are however cases where synchronisation acts against the stability of the system; for instance in the case of engineered structures, resonances among sub parts can destabilise the whole system. In this Letter we propose an innovative control method to tackle the synchronisation process based on the use of the Hamiltonian control theory, by adding a small control term to the system we are able to impede the onset of the synchronisation. We present our results on the paradigmatic Kuramoto model but the applicability domain is far more large.
We show that an introduction of a phase parameter ($alpha$), with $0 le alpha le pi/2$, in the interlayer coupling terms of multiplex networks of Kuramoto oscillators can induce explosive synchronization (ES) in the multiplexed layers. Along with the
We study the effects of Janus oscillators in a system of phase oscillators in which the coupling constants take both positive and negative values. Janus oscillators may also form a cluster when the other ones are ordered and we calculate numerically
The Kuramoto-Sakaguchi model for coupled phase oscillators with phase-frustration is often studied in the thermodynamic limit of infinitely many oscillators. Here we extend a model reduction method based on collective coordinates to capture the colle
We consider the inertial Kuramoto model of $N$ globally coupled oscillators characterized by both their phase and angular velocity, in which there is a time delay in the interaction between the oscillators. Besides the academic interest, we show that
We study the global bifurcations of frequency weighted Kuramoto model in low-dimension for network of fully connected oscillators. To study the effect of non-zero-centered frequency distribution, we consider two symmetric Lorentzians as an example. W