ترغب بنشر مسار تعليمي؟ اضغط هنا

The Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX

78   0   0.0 ( 0 )
 نشر من قبل Matteo Palermo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new experiment to quantitatively measure neutrons induced by cosmic-ray muons in selected high-Z materials is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, and the results from its first data taking period are presented as well as future plans. Neutron production in high-Z materials is of particular interest as such materials are used for shielding in low-background experiments. The design of next-generation large-scale experiments searching for neutrinoless double beta decay or direct interactions of dark matter requires reliable Monte Carlo simulations of background induced by muon interactions. The first five months of operation already provided a valuable data set on neutron production and neutron transport in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions obtained with two GEANT4- based packages is presented. The rate of muon-induced events is overall a factor three to four higher in data than predicted by the Monte Carlo packages. In addition, the time evolution of the muon-induced signal is not well described by the simulations.



قيم البحث

اقرأ أيضاً

121 - F.Bellini , C.Bucci , S.Capelli 2009
CUORE is a 1 ton scale cryogenic experiment aiming at the measurement of the Majorana mass of the electron neutrino. The detector is an array of 988 TeO2 bolometers used for a calorimetric detection of the two electrons emitted in the BB0n of 130Te. The sensitivity of the experiment to the lowest Majorana mass is determined by the rate of background events that can mimic a BB0n. In this paper we investigate the contribution of external sources i.e. environmental gammas, neutrons and cosmic ray muons to the CUORE background and show that the shielding setup designed for CUORE guarantees a reduction of this external background down to a level <1.0E-02 c/keV/kg/y at the Q-value, as required by the physical goal of the experiment.
A measurement is presented of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (w.e.) and a mean muon energy of 260 GeV. The measurement exploits the delayed coincidences between muons and the radiative capture of induced neutrons in a highly segmented tonne scale plastic scintillator detector. Detailed Monte Carlo simulations reproduce well the measured capture times and multiplicities and, within the dynamic range of the instrumentation, the spectrum of energy deposits. By comparing measurements with simulations of neutron capture rates a neutron yield in lead of (5.78^{+0.21}_{-0.28}) x 10^{-3} neutrons/muon/(g/cm^{2}) has been obtained. Absolute agreement between simulation and data is of order 25%. Consequences for deep underground rare event searches are discussed.
96 - J. Hakenmuller 2019
CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino ($bar u$) source. The detector setup is installed at the commerc ial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 10$^{13}bar u$/(s$cdot$cm$^2$). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745$pm$30)cm$^{-2}$d$^{-1}$. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of $sim$10$^{20}$ on their way to the CONUS shield. With a high-purity Ge detector without shield the $gamma$-ray background was examined including highly thermal power correlated $^{16}$N decay products as well as $gamma$-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.
107 - T.C. Huang , R. Ma , B. Huang 2016
Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identificat ion performance for the MTD using proton-proton collision at $sqrt{s}$ = 500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach to $sim$90% for muons with transverse momentum greater than 3 GeV/c and the significance of J/$psi$ signal is improved by $sim$40% compared to using the basic selection.
The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model backgroun d level to less than 0.1 event after $2times 10^{20}$ protons on target. In the beam dump, around $10^{11}$ muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا