ﻻ يوجد ملخص باللغة العربية
We consider the semilinear heat equation, to which we add a nonlinear gradient term, with a critical power. We construct a solution which blows up in finite time. We also give a sharp description of its blow-up profile. The proof relies on the reduction of the problem to a finite dimensional one, and uses the index theory to conclude. Thanks to the interpretation of the parameters of the finite-dimensional problem in terms of the blow-up time and point, we also show the stability of the constructed solution with respect to initial data. This note presents the results and the main arguments. For the details, we refer to our paper cite{TZ15}.
We consider the nonlinear heat equation with a nonlinear gradient term: $partial_t u =Delta u+mu| abla u|^q+|u|^{p-1}u,; mu>0,; q=2p/(p+1),; p>3,; tin (0,T),; xin R^N.$ We construct a solution which blows up in finite time $T>0.$ We also give a sharp
We prove that any sufficiently differentiable space-like hypersurface of ${mathbb R}^{1+N} $ coincides locally around any of its points with the blow-up surface of a finite-energy solution of the focusing nonlinear wave equation $partial_{tt} u - Del
The final goal of this paper is to prove existence of local (strong) solutions to a (fully nonlinear) porous medium equation with blow-up term and nondecreasing constraint. To this end, the equation, arising in the context of Damage Mechanics, is ref
We consider a parabolic-type PDE with a diffusion given by a fractional Laplacian operator and with a quadratic nonlinearity of the gradient of the solution, convoluted with a singular term b. Our first result is the well-posedness for this problem:
We study finite time blow-up and global existence of solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term. We show that for small enough initial data, if $rho(x)sim frac{1}{lef