ﻻ يوجد ملخص باللغة العربية
We present a study of the dust, stars and atomic gas (HI) in an HI-selected sample of local galaxies (z<0.035) in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) fields. This HI-selected sample reveals a population of very high gas fraction (>80 per cent), low stellar mass sources that appear to be in the earliest stages of their evolution. We compare this sample with dust and stellar mass selected samples to study the dust and gas scaling relations over a wide range of gas fraction (proxy for evolutionary state of a galaxy). The most robust scaling relations for gas and dust are those linked to NUV-r (SSFR) and gas fraction, these do not depend on sample selection or environment. At the highest gas fractions, our additional sample shows the dust content is well below expectations from extrapolating scaling relations for more evolved sources, and dust is not a good tracer of the gas content. The specific dust mass for local galaxies peaks at a gas fraction of ~75 per cent. The atomic gas depletion time is also longer for high gas fraction galaxies, opposite to the trend found for molecular gas depletion timescale. We link this trend to the changing efficiency of conversion of HI to H2 as galaxies increase in stellar mass surface density as they evolve. Finally, we show that galaxies start out barely obscured and increase in obscuration as they evolve, yet there is no clear and simple link between obscuration and global galaxy properties.
We combine samples of nearby galaxies with Herschel photometry selected on their dust, metal, HI, and stellar mass content, and compare these to chemical evolution models in order to discriminate between different dust sources. In a companion paper,
Methods. We have modelled a sample of ~800 nearby galaxies, spanning a wide range of metallicity, gas fraction, specific star formation rate and Hubble stage. We have derived the dust properties of each object from its spectral energy distribution. T
We present an analysis of CO molecular gas tracers in a sample of 500{mu}m-selected Herschel-ATLAS galaxies at z<0.05 (cz<14990km/s). Using 22-500{mu}m photometry from WISE, IRAS and Herschel, with HI data from the literature, we investigate correlat
Observations of interstellar dust are often used as a proxy for total gas column density $N_mathrm{H}$. By comparing $textit{Planck}$ thermal dust data (Release 1.2) and new dust reddening maps from Pan-STARRS 1 and 2MASS (Green et al. 2018), with ac
We combine molecular gas masses inferred from CO emission in 500 star forming galaxies (SFGs) between z=0 and 3, from the IRAM-COLDGASS, PHIBSS1/2 and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks