ﻻ يوجد ملخص باللغة العربية
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed covariant diagrams. The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some con
In this paper we present the complete one-loop matching conditions, up to dimension-six operators of the Standard Model effective field theory, resulting by integrating out the two scalar leptoquarks $S_{1}$ and $S_{3}$. This allows a phenomenologica
Transverse momentum dependent parton distribution functions (TMDPDFs) provide a unique probe of the three-dimensional spin structure of hadrons. We construct spin-dependent quasi-TMDPDFs that are amenable to lattice QCD calculations and that can be u
Perturbative matching relates the parton quasi-distributions, defined by Euclidean correlators at finite hadron momenta, to the light-cone distributions which are accessible in experiments. Previous matching calculations have exclusively focused on t
Leptonic and semileptonic meson decays that proceed via flavour-changing neutral currents provide excellent probes of physics of the standard model and beyond. We present explicit results for the Wilson coefficients of the weak effective Lagrangian f