ﻻ يوجد ملخص باللغة العربية
We present the first results from an optical reverberation mapping campaign executed in 2014, targeting the active galactic nuclei (AGN) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a changing look AGN and a broad-line radio galaxy. Based on continuum-H$beta$ lags, we measure black hole masses for all five targets. We also obtain H$gamma$ and He{sc ii},$lambda 4686$ lags for all objects except 3C 382. The He{sc ii},$lambda 4686$ lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100--300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.
We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one AGN (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-Hbe
We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140-day span b
We report velocity-delay maps for prominent broad emission lines, Ly_alpha, CIV, HeII and H_beta, in the spectrum of NGC5548. The emission-line responses inhabit the interior of a virial envelope. The velocity-delay maps reveal stratified ionization
During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert~1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far-UV continuum and broad emission-line v
Quasar emission lines are often shifted from the systemic velocity due to various dynamical and radiative processes in the line-emitting region. The level of these velocity shifts depends both on the line species and on quasar properties. We study ve