ترغب بنشر مسار تعليمي؟ اضغط هنا

Structured Inference Networks for Nonlinear State Space Models

89   0   0.0 ( 0 )
 نشر من قبل Rahul Gopal Krishnan
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaussian state space models have been used for decades as generative models of sequential data. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption. We introduce a unified algorithm to efficiently learn a broad class of linear and non-linear state space models, including variants where the emission and transition distributions are modeled by deep neural networks. Our learning algorithm simultaneously learns a compiled inference network and the generative model, leveraging a structured variational approximation parameterized by recurrent neural networks to mimic the posterior distribution. We apply the learning algorithm to both synthetic and real-world datasets, demonstrating its scalability and versatility. We find that using the structured approximation to the posterior results in models with significantly higher held-out likelihood.



قيم البحث

اقرأ أيضاً

We propose a general modeling and inference framework that composes probabilistic graphical models with deep learning methods and combines their respective strengths. Our model family augments graphical structure in latent variables with neural netwo rk observation models. For inference, we extend variational autoencoders to use graphical model approximating distributions with recognition networks that output conjugate potentials. All components of these models are learned simultaneously with a single objective, giving a scalable algorithm that leverages stochastic variational inference, natural gradients, graphical model message passing, and the reparameterization trick. We illustrate this framework with several example models and an application to mouse behavioral phenotyping.
Single Index Models (SIMs) are simple yet flexible semi-parametric models for machine learning, where the response variable is modeled as a monotonic function of a linear combination of features. Estimation in this context requires learning both the feature weights and the nonlinear function that relates features to observations. While methods have been described to learn SIMs in the low dimensional regime, a method that can efficiently learn SIMs in high dimensions, and under general structural assumptions, has not been forthcoming. In this paper, we propose computationally efficient algorithms for SIM inference in high dimensions with structural constraints. Our general approach specializes to sparsity, group sparsity, and low-rank assumptions among others. Experiments show that the proposed method enjoys superior predictive performance when compared to generalized linear models, and achieves results comparable to or better than single layer feedforward neural networks with significantly less computational cost.
Continuous latent time series models are prevalent in Bayesian modeling; examples include the Kalman filter, dynamic collaborative filtering, or dynamic topic models. These models often benefit from structured, non mean field variational approximatio ns that capture correlations between time steps. Black box variational inference with reparameterization gradients (BBVI) allows us to explore a rich new class of Bayesian non-conjugate latent time series models; however, a naive application of BBVI to such structured variational models would scale quadratically in the number of time steps. We describe a BBVI algorithm analogous to the forward-backward algorithm which instead scales linearly in time. It allows us to efficiently sample from the variational distribution and estimate the gradients of the ELBO. Finally, we show results on the recently proposed dynamic word embedding model, which was trained using our method.
We examine an analytic variational inference scheme for the Gaussian Process State Space Model (GPSSM) - a probabilistic model for system identification and time-series modelling. Our approach performs variational inference over both the system state s and the transition function. We exploit Markov structure in the true posterior, as well as an inducing point approximation to achieve linear time complexity in the length of the time series. Contrary to previous approaches, no Monte Carlo sampling is required: inference is cast as a deterministic optimisation problem. In a number of experiments, we demonstrate the ability to model non-linear dynamics in the presence of both process and observation noise as well as to impute missing information (e.g. velocities from raw positions through time), to de-noise, and to estimate the underlying dimensionality of the system. Finally, we also introduce a closed-form method for multi-step prediction, and a novel criterion for assessing the quality of our approximate posterior.
Deep neural networks (DNN) and Gaussian processes (GP) are two powerful models with several theoretical connections relating them, but the relationship between their training methods is not well understood. In this paper, we show that certain Gaussia n posterior approximations for Bayesian DNNs are equivalent to GP posteriors. This enables us to relate solutions and iterations of a deep-learning algorithm to GP inference. As a result, we can obtain a GP kernel and a nonlinear feature map while training a DNN. Surprisingly, the resulting kernel is the neural tangent kernel. We show kernels obtained on real datasets and demonstrate the use of the GP marginal likelihood to tune hyperparameters of DNNs. Our work aims to facilitate further research on combining DNNs and GPs in practical settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا