ترغب بنشر مسار تعليمي؟ اضغط هنا

Matter-wave dark solitons in box-like traps

69   0   0.0 ( 0 )
 نشر من قبل Nicholas Parker
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the experimental development of quasi-homogeneous Bose-Einstein condensates confined in box-like traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of the box potential rise either as a power-law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the solitons speed. We characterise this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the box-like trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field.



قيم البحث

اقرأ أيضاً

We use an effective one-dimensional Gross-Pitaevskii equation to study bright matter-wave solitons held in a tightly confining toroidal trapping potential, in a rotating frame of reference, as they are split and recombined on narrow barrier potential s. In particular, we present an analytical and numerical analysis of the phase evolution of the solitons and delimit a velocity regime in which soliton Sagnac interferometry is possible, taking account of the effect of quantum uncertainty.
Understanding collisions between ultracold molecules is crucial for making stable molecular quantum gases and harnessing their rich internal degrees of freedom for quantum engineering. Transient complexes can strongly influence collisional physics, b ut in the ultracold regime, key aspects of their behavior have remained unknown. To explain experimentally observed loss of ground-state molecules from optical dipole traps, it was recently proposed that molecular complexes can be lost due to photo-excitation. By trapping molecules in a repulsive box potential using laser light near a narrow molecular transition, we are able to test this hypothesis with light intensities three orders of magnitude lower than what is typical in red-detuned dipole traps. This allows us to investigate light-induced collisional loss in a gas of nonreactive fermionic $^{23}$Na$^{40}$K molecules. Even for the lowest intensities available in our experiment, our results are consistent with universal loss, meaning unit loss probability inside the short-range interaction potential. Our findings disagree by at least two orders of magnitude with latest theoretical predictions, showing that crucial aspects of molecular collisions are not yet understood, and provide a benchmark for the development of new theories.
We study the stability, form and interaction of single and multiple dark solitons in quasi-one-dimensional dipolar Bose-Einstein condensates. The solitons are found numerically as stationary solutions in the moving frame of a non-local Gross Pitaevsk ii equation, and characterized as a function of the key experimental parameters, namely the ratio of the dipolar atomic interactions to the van der Waals interactions, the polarization angle and the condensate width. The solutions and their integrals of motion are strongly affected by the phonon and roton instabilities of the system. Dipolar matter-wave dark solitons propagate without dispersion, and collide elastically away from these instabilities, with the dipolar interactions contributing an additional repulsion or attraction to the soliton-soliton interaction. However, close to the instabilities, the collisions are weakly dissipative.
We study the family of static and moving dark solitons in quasi-one-dimensional dipolar Bose-Einstein condensates, exploring their modified form and interactions. The density dip of the soliton acts as a giant anti-dipole which adds a non-local contr ibution to the conventional local soliton-soliton interaction. We map out the stability diagram as a function of the strength and polarization direction of the atomic dipoles, identifying both roton and phonon instabilities. Away from these instabilities, the solitons collide elastically. Varying the polarization direction relative to the condensate axis enables tuning of this non-local interaction between repulsive and attractive; the latter case supports unusual dark soliton bound states. Remarkably, these bound states are themselves shown to behave like solitons, emerging unscathed from collisions with each other.
We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a non-interacting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semi-classical dynamics of the dark soliton, a particle-like object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative mass objects and find that their dynamics are drastically different from their positive mass counterparts - they do not undergo Brownian motion. From the exact phase space probability distribution function (i.e. in position and velocity), we find that both the trajectory and lifetime of the soliton are altered by friction, and the soliton can only undergo Brownian motion in the presence of friction and a confining potential. These results agree qualitatively with experimental observations by Aycock, et. al. (PNAS, 2017) in a similar system with bosonic impurity scatterers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا