ﻻ يوجد ملخص باللغة العربية
We study the spontaneous decoherence of the coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the hidden couplings between the center-of-mass and relative degrees of freedoms, which actually originates from the symmetries of the ring geometry and corresponding nontrivial boundary conditions. Especially, such spontaneous decoherence completely vanishes at the thermodynamical limit because the nontrivial boundary conditions become trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has chance to degrade its quantum properties even without applying an external symmetry breaking field or surrounding environment.
Two-dimensional systems with time-dependent controls admit a quadratic Hamiltonian modelling near potential minima. Independent, dynamical normal modes facilitate inverse Hamiltonian engineering to control the system dynamics, but some systems are no
A single superconducting artificial atom provides a unique basis for coupling electromagnetic fields and photons hardly achieved with a natural atom. Bringing a pair of harmonic oscillators into resonance with transitions of the three-level atom conv
Quantum mechanical behavior of coupled N-kicked rotators is studied. In the large N limit each rotator evolves under influence of the mean-field generated by surrounding rotators. It is found that the system spontaneously generates classical chaos in
We derive explicitly the thermal state of the two coupled harmonic oscillator system when the spring and coupling constants are arbitrarily time-dependent. In particular, we focus on the case of sudden change of frequencies. In this case we compute p
Exponential growth of thermal out-of-time-order correlator (OTOC) is an indicator of a possible gravity dual, and a simple toy quantum model showing the growth is being looked for. We consider a system of two harmonic oscillators coupled nonlinearly