ﻻ يوجد ملخص باللغة العربية
In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this paper, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasi-static regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.
The scattering of a wave obeying Helmholtz equation by an elliptic obstacle can be described exactly using series of Mathieu functions. This situation is relevant in optics, quantum mechanics and fluid dynamics. We focus on the case when the waveleng
Machine learning promises to deliver powerful new approaches to neutron scattering from magnetic materials. Large scale simulations provide the means to realise this with approaches including spin-wave, Landau Lifshitz, and Monte Carlo methods. These
We compare three different methods to obtain solutions of Sturm-Liouville problems: a successive approximation method and two other iterative methods. We look for solutions with periodic or anti periodic boundary conditions. With some numerical test
Many synthetic quantum systems allow particles to have dispersion relations that are neither linear nor quadratic functions. Here, we explore single-particle scattering in one dimension when the dispersion relation is $epsilon(k)=pm |d|k^m$, where $m
In this article we study resonances and surface waves in $pi^+$--p scattering. We focus on the sequence whose spin-parity values are given by $J^p = {3/2}^+,{7/2}^+, {11/2}^+, {15/2}^+,{19/2}^+$. A widely-held belief takes for granted that this seque