ﻻ يوجد ملخص باللغة العربية
We here report a detailed high-pressure infrared transmission study of BiTeCl and BiTeBr. We follow the evolution of two band transitions: the optical excitation $beta$ between two Rashba-split conduction bands, and the absorption $gamma$ across the band gap. In the low pressure range, $p< 4$~GPa, for both compounds $beta$ is approximately constant with pressure and $gamma$ decreases, in agreement with band structure calculations. In BiTeCl, a clear pressure-induced phase transition at 6~GPa leads to a different ground state. For BiTeBr, the pressure evolution is more subtle, and we discuss the possibility of closing and reopening of the band gap. Our data is consistent with a Weyl phase in BiTeBr at 5$-$6~GPa, followed by the onset of a structural phase transition at 7~GPa.
We present a comparative study of the optical properties - reflectance, transmission and optical conductivity - and Raman spectra of two layered bismuth-tellurohalides BiTeBr and BiTeCl at 300 K and 5 K, for light polarized in the a-b planes. Despite
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment
We performed X-ray diffraction and electrical resistivity measurement up to pressures of 5 GPa and the first-principles calculations utilizing experimental structural parameters to investigate the pressure-induced topological phase transition in BiTe
Co$_3$O$_4$, ZnFe$_2$O$_4$, CoFe$_2$O$_4$, ZnCo$_2$O$_4$, and Fe$_3$O$_4$ thin films were fabricated by pulsed laser deposition at high and low temperatures resulting in crystalline single-phase normal, inverse, as well as disordered spinel oxide thi
SrMoO4 was studied under compression up to 25 GPa by angle-dispersive x-ray diffraction. A phase transition was observed from the scheelite-structured ambient phase to a monoclinic fergusonite phase at 12.2(9) GPa with cell parameters a = 5.265(9) A,