ﻻ يوجد ملخص باللغة العربية
Josephson parametric amplifiers (JPA) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs, three of them exhibiting a hysteretic dependence of the resonant frequency versus the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices (dc-SQUID), which provide the JPA nonlinearity, for a finite screening parameter $beta_mathrm{L},{>},0$ and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a
We have developed a Josephson parametric amplifier, comprising a superconducting coplanar waveguide resonator terminated by a dc SQUID (superconducting quantum interference device). An external field (the pump, $sim 20$ GHz) modulates the flux thread
We have developed and measured a high-gain quantum-limited microwave parametric amplifier based on a superconducting lumped LC resonator with the inductor L including an array of 8 superconducting quantum interference devices (SQUIDs). This amplifier
We report the parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonl
We discuss heat transport in a thermally-biased SQUID in the presence of an external magnetic flux, when a non-negligible inductance of the SQUID ring is taken into account. A properly sweeping driving flux causes the thermal current to modulate and