ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative diagnostics in the solar photosphere and chromosphere

93   0   0.0 ( 0 )
 نشر من قبل Jaime de la Cruz Rodriguez
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields on the surface of the Sun and stars in general imprint or modify the polarization state of the electromagnetic radiation that is leaving from the star. The inference of solar/stellar magnetic fields is performed by detecting, studying and modeling polarized light from the target star. In this review we present an overview of techniques that are used to study the atmosphere of the Sun, and particularly those that allow to infer magnetic fields. We have combined a small selection of theory on polarized radiative transfer, inversion techniques and we discuss a number of results from chromospheric



قيم البحث

اقرأ أيضاً

Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D ti me dependent MHD simulations. Aims. To find simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heating of the gas and similar formulae can be derived for these processes. We finally derive a simple recipe for the radiative heating of the chromosphere from incoming coronal radiation. We compare our recipes with the detailed results and comment on the accuracy and applicability of the recipes.
We study the dynamics of plasma along the legs of an arch filament system (AFS) from the chromosphere to the photosphere, observed with high-cadence spectroscopic data from two ground-based solar telescopes: the GREGOR telescope (Tenerife) using the GREGOR Infrarred Spectrograph (GRIS) in the He I 10830 r{A} range and the Swedish Solar Telescope (La Palma) using the CRisp Imaging Spectro-Polarimeter to observe the Ca II 8542 r{A} and Fe I 6173 r{A} spectral lines. The temporal evolution of the draining of the plasma was followed along the legs of a single arch filament from the chromosphere to the photosphere. The average Doppler velocities inferred at the upper chromosphere from the He I 10830 r{A} triplet reach velocities up to 20-24~km~s$^{-1}$, in the lower chromosphere and upper photosphere the Doppler velocities reach up to 11~km~s$^{-1}$ and 1.5~km~s$^{-1}$ in the case of the Ca II 8542 r{A} and Si I 10827 r{A} spectral lines, respectively. The evolution of the Doppler velocities at different layers of the solar atmosphere (chromosphere and upper photosphere) shows that they follow the same LOS velocity pattern, which confirm the observational evidence that the plasma drains towards the photosphere as proposed in models of AFSs. The Doppler velocity maps inferred from the lower photospheric Ca I 10839 r{A} or Fe I 6173 r{A} spectral lines do not show the same LOS velocity pattern. Thus, there is no evidence that the plasma reaches the lower photosphere. The observations and the nonlinear force-free field extrapolations demonstrate that the magnetic field loops of the AFS rise with time. We found flow asymmetries at different footpoints of the AFS. The NLFFF values of the magnetic field strength give us a clue to explain these flow asymmetries.
Besides their own intrinsic interest, correct interpretation of solar surface magnetic field observations is crucial to our ability to describe the global magnetic structure of the solar atmosphere. Photospheric magnetograms are often used as lower b oundary conditions in models of the corona, but not data from the nearly force-free chromosphere. National Solar Observatorys (NSO) Synoptic Optical Long-term Investigations of the Sun VSM (Vector Spectromagnetograph) produces full-disk line-of-sight magnetic flux images deriving from both photospheric and chromospheric layers on a daily basis. In this paper, we investigate key properties of the magnetic field in these two layers using more than five years of VSM data. We find from near-equatorial measurements that the east-west inclination angle of most photospheric fields is less than about 12{deg}, while chromospheric fields expand in all directions to a significant degree. Using a simple stereoscopic inversion, we find evidence that photospheric polar fields are also nearly radial but that during 2008 the chromospheric field in the south pole was expanding superradially. We obtain a spatially resolved polar photospheric flux distribution up to 80{deg} latitude whose strength increases poleward approximately as cosine(colatitude) to the power 9-10. This distribution would give a polar field strength of 5-6 G. We briefly discuss implications for future synoptic map construction and modeling.
A white paper prepared for the Space Studies Board, National Academy of Sciences (USA), for its Decadal Survey of Solar and Space Physics (Heliophysics), reviewing and encouraging studies of flare physics in the chromosphere.
NASAs Interface Region Imaging Spectrograph (IRIS) provides high resolution observations of the solar atmosphere through UV spectroscopy and imaging. Since the launch of IRIS in June 2013, we have conducted systematic observation campaigns in coordin ation with the Swedish 1-m Solar Telescope (SST) on La Palma. The SST provides complementary high-resolution observations of the photosphere and chromosphere. The SST observations include spectro-polarimetric imaging in photospheric Fe I lines and spectrally-resolved imaging in the chromospheric Ca II 8542 A, H-alpha, and Ca II K lines. We present a database of co-aligned IRIS and SST datasets that is open for analysis to the scientific community. The database covers a variety of targets including active regions, sunspots, plage, quiet Sun, and coronal holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا