$p$-adic Distance, Finite Precision and Emergent Superdeterminism: A Number-Theoretic Consistent-Histories Approach to Local Quantum Realism


الملخص بالإنكليزية

Although the notion of superdeterminism can, in principle, account for the violation of the Bell inequalities, this potential explanation has been roundly rejected by the quantum foundations community. The arguments for rejection, one of the most substantive coming from Bell himself, are critically reviewed. In particular, analysis of Bells argument reveals an implicit unwarranted assumption: that the Euclidean metric is the appropriate yardstick for measuring distances in state space. Bells argument is largely negated if this yardstick is instead based on the alternative $p$-adic metric. Such a metric, common in number theory, arises naturally when describing chaotic systems which evolve precisely on self-similar invariant sets in their state space. A locally-causal realistic model of quantum entanglement is developed, based on the premise that the laws of physics ultimately derive from an invariant-set geometry in the state space of a deterministic quasi-cyclic mono-universe. Based on this, the notion of a complex Hilbert vector is reinterpreted in terms of an uncertain selection from a finite sample space of states, leading to a novel form of `consistent histories based on number-theoretic properties of the transcendental cosine function. This leads to novel realistic interpretations of position/momentum non-commutativity, EPR, the Bell Theorem and the Tsirelson bound. In this inherently holistic theory - neither conspiratorial, retrocausal, fine tuned nor nonlocal - superdeterminism is not invoked by fiat but is emergent from these `consistent histories number-theoretic constraints. Invariant set theory provides new perspectives on many of the contemporary problems at the interface of quantum and gravitational physics, and, if correct, may signal the end of particle physics beyond the Standard Model.

تحميل البحث