ﻻ يوجد ملخص باللغة العربية
Multiscale models allow for the treatment of complex phenomena involving different scales, such as remodeling and growth of tissues, muscular activation, and cardiac electrophysiology. Numerous numerical approaches have been developed to simulate multiscale problems. However, compared to the well-established methods for classical problems, many questions have yet to be answered. Here, we give an overview of existing models and methods, with particular emphasis on mechanical and bio-mechanical applications. Moreover, we discuss state-of-the-art techniques for multilevel and multifidelity uncertainty quantification. In particular, we focus on the similarities that can be found across multiscale models, discretizations, solvers, and statistical methods for uncertainty quantification. Similarly to the current trend of removing the segregation between discretizations and solution methods in scientific computing, we anticipate that the future of multiscale simulation will provide a closer interaction with also the models and the statistical methods. This will yield better strategies for transferring the information across different scales and for a more seamless transition in selecting and adapting the level of details in the models. Finally, we note that machine learning and Bayesian techniques have shown a promising capability to capture complex model dependencies and enrich the results with statistical information; therefore, they can complement traditional physics-based and numerical analysis approaches.
We present a novel preconditioning technique for Krylov subspace algorithms to solve fluid-structure interaction (FSI) linearized systems arising from finite element discretizations. An outer Krylov subspace solver preconditioned with a geometric mul
Electrostatic forces play many important roles in molecular biology, but are hard to model due to the complicated interactions between biomolecules and the surrounding solvent, a fluid composed of water and dissolved ions. Continuum model have been s
In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete char
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow prob
It is well known that domain-decomposition-based multiscale mixed methods rely on interface spaces, defined on the skeleton of the decomposition, to connect the solution among the non-overlapping subdomains. Usual spaces, such as polynomial-based one