ﻻ يوجد ملخص باللغة العربية
We consider the effect of electron-electron interactions on a voltage biased quantum point contact in the tunneling regime used as a detector of a nearby qubit. We model the leads of the quantum point contact as Luttinger liquids, incorporate the effects of finite temperature and analyze the detection-induced decoherence rate and the detector efficiency, $Q$. We find that interactions generically reduce the induced decoherence along with the detectors efficiency, and strongly affect the relative strength of the decoherence induced by tunneling and that induced by interactions with the local density. With increasing interaction strength, the regime of quantum-limited detection ($Q=1$) is shifted to increasingly lower temperatures or higher bias voltages respectively. For small to moderate interaction strengths, $Q$ is a monotonously decreasing function of temperature as in the non-interacting case. Surprisingly, for sufficiently strong interactions we identify an intermediate temperature regime where the efficiency of the detector increases with rising temperature.
Berry phase effect plays a central role in many mesoscale condensed matter and quantum chemical systems that are naturally under the environmental influence of dissipation. We propose and microscopically derive a prototypical quantum coherent tunneli
We analyze the magnetic and transport properties of a double quantum dot coupled to superconducting leads. In addition to the possible phase transition to a $pi$ state, already present in the single dot case, this system exhibits a richer magnetic be
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) r
Many-body correlations and macroscopic quantum behaviors are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo model which entails the coupling of a quantum impurity to a continuum of state
In quantum Hall systems with two narrow constrictions, tunneling between opposite edges can give rise to quantum interference and Aharonov-Bohm-like oscillations of the conductance. When there is an integer quantized Hall state within the constrictio