This paper reviews results from the study of wall-bounded turbulent flows using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure which isolates the interaction between the streamwise mean and the equivalent of the perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean together with nonlinear interactions between the mean and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems in which an ensemble of a finite number of realizations of the perturbation equation share the same mean flow provide tractable approximations to the equivalently infinite ensemble RNL system. The infinite ensemble system, referred to as the S3T, introduces new analysis tools for studying turbulence. The RNL with a single ensemble member can be alternatively viewed as a realization of RNL dynamics. RNL systems provide computationally efficient means to approximate the SSD, producing self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations (DNS) despite its greatly simplified dynamics. Finally, we show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support, or band-limiting, can be used to improve quantitative accuracy of RNL turbulence. The results suggest that the SSD approach provides new analytical and computational tools allowing new insights into wall-turbulence.