ترغب بنشر مسار تعليمي؟ اضغط هنا

Exocometary gas structure, origin and physical properties around $beta$ Pictoris through ALMA CO multi-transition observations

134   0   0.0 ( 0 )
 نشر من قبل Luca Matr\\`a
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent ALMA observations unveiled the structure of CO gas in the 23 Myr-old $beta$ Pictoris planetary system, a component that has been discovered in many similarly young debris disks. We here present ALMA CO J=2-1 observations, at an improved spectro-spatial resolution and sensitivity compared to previous CO J=3-2 observations. We find that 1) the CO clump is radially broad, favouring the resonant migration over the giant impact scenario for its dynamical origin, 2) the CO disk is vertically tilted compared to the main dust disk, at an angle consistent with the scattered light warp. We then use position-velocity diagrams to trace Keplerian radii in the orbital plane of the disk. Assuming a perfectly edge-on geometry, this shows a CO scale height increasing with radius as $R^{0.75}$, and an electron density (derived from CO line ratios through NLTE analysis) in agreement with thermodynamical models. Furthermore, we show how observations of optically thin line ratios can solve the primordial versus secondary origin dichotomy in gas-bearing debris disks. As shown for $beta$ Pictoris, subthermal (NLTE) CO excitation is symptomatic of H$_2$ densities that are insufficient to shield CO from photodissociation over the systems lifetime. This means that replenishment from exocometary volatiles must be taking place, proving the secondary origin of the disk. In this scenario, assuming steady state production/destruction of CO gas, we derive the CO+CO$_2$ ice abundance by mass in $beta$ Pics exocomets to be at most $sim$6%, consistent with comets in our own Solar System and in the coeval HD181327 system.



قيم البحث

اقرأ أيضاً

The intermediate-mass star Beta Pictoris is known to be surrounded by a structured edge-on debris disk within which a gas giant planet was discovered orbiting at 8-10 AU. The physical properties of Beta Pic b were previously inferred from broad and n arrow-band 0.9-4.8 microns photometry. We used commissioning data of the Gemini Planet Imager (GPI) to obtain new astrometry and a low-resolution (R=35-39) J-band (1.12-1.35 microns) spectrum of the planet. We find that the planet has passed the quadrature. We constrain its semi-major axis to $leq$ 10 AU (90 % prob.) with a peak at 8.9+0.4-0.6 AU. The joint fit of the planet astrometry and the most recent radial velocity measurements of the star yields a planets dynamical mass $leq$ 20 MJup (greater than 96 % prob.). The extracted spectrum of Beta Pic b is similar to those of young L1-1.5+1 dwarfs. We use the spectral type estimate to revise the planet luminosity to log(L/Lsun)=-3.90+-0.07. The 0.9-4.8 microns photometry and spectrum are reproduced for Teff=1650+-150 K and a log g lower than 4.7 dex by 12 grids of PHOENIX-based and LESIA atmospheric models. If we adopt the most recent system age estimate (21+-4 Myr), the bolometric luminosity and the constraints on the dynamical mass of Beta Pic b are only reproduced by warm- and hot-start tracks with initial entropies Si greater than 10.5 kB/baryon. Such initial conditions may result from an inefficient accretion shock and/or a planetesimal density at formation higher than in the classical core accretion model. Considering a younger age for the system or a conservative formation time for Beta Pic b does not change these conclusions.
132 - C. H. Chen , A. Li , C. Bohac 2007
We have obtained Spitzer IRS 5.5 - 35 micron spectroscopy of the debris disk around beta Pictoris. In addition to the 10 micron silicate emission feature originally observed from the ground, we also detect the crystalline silicate emission bands at 2 8 micron and 33.5 micron. This is the first time that the silicate bands at wavelengths longer than 10 micron have ever been seen in the beta Pictoris disk. The observed dust emission is well reproduced by a dust model consisting of fluffy cometary and crystalline olivine aggregates. We searched for line emission from molecular hydrogen and atomic [S I], Fe II, and Si II gas but detected none. We place a 3 sigma upper limit of <17 Earth masses on the H2 S(1) gas mass, assuming an excitation temperature of Tex = 100 K. This suggests that there is less gas in this system than is required to form the envelope of Jupiter. We hypothesize that some of the atomic Na I gas observed in Keplerian rotation around beta Pictoris may be produced by photon-stimulated desorption from circumstellar dust grains.
109 - S. Marino , M. Flock , Th. Henning 2020
The presence of CO gas around 10-50 Myr old A stars with debris discs has sparked debate on whether the gas is primordial or secondary. Since secondary gas released from planetesimals is poor in H$_2$, it was thought that CO would quickly photodissoc iate never reaching the high levels observed around the majority of A stars with bright debris discs. Kral et al. 2019 showed that neutral carbon produced by CO photodissociation can effectively shield CO and potentially explain the high CO masses around 9 A stars with bright debris discs. Here we present a new model that simulates the gas viscous evolution, accounting for carbon shielding and how the gas release rate decreases with time as the planetesimal disc loses mass. We find that the present gas mass in a system is highly dependant on its evolutionary path. Since gas is lost on long timescales, it can retain a memory of the initial disc mass. Moreover, we find that gas levels can be out of equilibrium and quickly evolving from a shielded onto an unshielded state. With this model, we build the first population synthesis of gas around A stars, which we use to constrain the disc viscosity. We find a good match with a high viscosity ($alphasim0.1$), indicating that gas is lost on timescales $sim1-10$ Myr. Moreover, our model also shows that high CO masses are not expected around FGK stars since their planetesimal discs are born with lower masses, explaining why shielded discs are only found around A stars. Finally, we hypothesise that the observed carbon cavities could be due to radiation pressure or accreting planets.
Millimeter observations of CO gas in planetesimal belts show a high detection rate around A stars, but few detections for later type stars. We present the first CO detection in a planetesimal belt around an M star, TWA 7. The optically thin CO (J=3-2 ) emission is co-located with previously identified dust emission from the belt, and the emission velocity structure is consistent with Keplerian rotation around the central star. The detected CO is not well shielded against photodissociation, and must thus be continuously replenished by gas release from exocomets within the belt. We analyze in detail the process of exocometary gas release and destruction around young M dwarfs and how this process compares to earlier type stars. Taking these differences into account, we find that CO generation through exocometary gas release naturally explains the increasing CO detection rates with stellar luminosity, mostly because the CO production rate from the collisional cascade is directly proportional to stellar luminosity. More luminous stars will therefore on average host more massive (and hence more easily detectable) exocometary CO disks, leading to the higher detection rates observed. The current CO detection rates are consistent with a ubiquitous release of exocometary gas in planetesimal belts, independent of spectral type.
We have used VLT/UVES to spatially resolve the gas disk of beta Pictoris. 88 extended emission lines are observed, with the brightest coming from Fe I, Na I and Ca II. The extent of the gas disk is much larger than previously anticipated; we trace Na I radially from 13 AU out to 323 AU and Ca II to heights of 77 AU above the disk plane, both to the limits of our observations. The degree of flaring is significantly larger for the gas disk than the dust disk. A strong NE/SW brightness asymmetry is observed, with the SW emission being abruptly truncated at 150-200 AU. The inner gas disk is tilted about 5 degrees with respect to the outer disk, similar to the appearance of the disk in light scattered from dust. We show that most, perhaps all, of the Na I column density seen in the stable component of absorption, comes from the extended disk. Finally, we discuss the effects of radiation pressure in the extended gas disk and show that the assumption of hydrogen, in whatever form, as a braking agent is inconsistent with observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا