ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Approximate Markov Chains are Thermal

126   0   0.0 ( 0 )
 نشر من قبل Kohtaro Kato
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that any one-dimensional (1D) quantum state with small quantum conditional mutual information in all certain tripartite splits of the system, which we call a quantum approximate Markov chain, can be well-approximated by a Gibbs state of a short-range quantum Hamiltonian. Conversely, we also derive an upper bound on the (quantum) conditional mutual information of Gibbs states of 1D short-range quantum Hamiltonians. We show that the conditional mutual information between two regions A and C conditioned on the middle region B decays exponentially with the square root of the length of B. These two results constitute a variant of the Hammersley-Clifford theorem (which characterizes Markov networks, i.e. probability distributions which have vanishing conditional mutual information, as Gibbs states of classical short-range Hamiltonians) for 1D quantum systems. The result can be seen as a strengthening - for 1D systems - of the mutual information area law for thermal states. It directly implies an efficient preparation of any 1D Gibbs state at finite temperature by a constant-depth quantum circuit.



قيم البحث

اقرأ أيضاً

With the advent of gravitational wave detectors employing squeezed light, quantum waveform estimation---estimating a time-dependent signal by means of a quantum-mechanical probe---is of increasing importance. As is well known, backaction of quantum m easurement limits the precision with which the waveform can be estimated, though these limits can in principle be overcome by quantum nondemolition (QND) measurement setups found in the literature. Strictly speaking, however, their implementation would require infinite energy, as their mathematical description involves Hamiltonians unbounded from below. This raises the question of how well one may approximate nondemolition setups with finite energy or finite-dimensional realizations. Here we consider a finite-dimensional waveform estimation setup based on the quasi-ideal clock and show that the estimation errors due to approximating the QND condition decrease slowly, as a power law, with increasing dimension. As a result, we find that good QND approximations require large energy or dimensionality. We argue that this result can be expected to also hold for setups based on truncated oscillators or spin systems.
We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The Gaussian maximizer property is established for the entropy reduction of these measurements which p rovides explicit formulas for computations including their entanglement-assisted capacity. The case of one mode is discussed in detail.
Using a newly introduced connection between the local and non-local description of open quantum system dynamics, we investigate the relationship between these two characterisations in the case of quantum semi-Markov processes. This class of quantum e volutions, which is a direct generalisation of the corresponding classical concept, guarantees mathematically well-defined master equations, while accounting for a wide range of phenomena, possibly in the non-Markovian regime. In particular, we analyse the emergence of a dephasing term when moving from one type of master equation to the other, by means of several examples. We also investigate the corresponding Redfield-like approximated dynamics, which are obtained after a coarse graining in time. Relying on general properties of the associated classical random process, we conclude that such an approximation always leads to a Markovian evolution for the considered class of dynamics.
A clock is, from an information-theoretic perspective, a system that emits information about time. One may therefore ask whether the theory of information imposes any constraints on the maximum precision of clocks. Here we show a quantum-over-classic al advantage for clocks or, more precisely, the task of generating information about what time it is. The argument is based on information-theoretic considerations: we analyse how the accuracy of a clock scales with its size, measured in terms of the number of bits that could be stored in it. We find that a quantum clock can achieve a quadratically improved accuracy compared to a purely classical one of the same size.
70 - Ming Xu , Jingyi Mei , Ji Guan 2021
Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we initialised the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time system, we specify the temporal properties on QCTMC by si gnal temporal logic (STL). To effectively check the atomic propositions in STL, we develop a state-of-art real root isolation algorithm under Schanuels conjecture; further, we check the general STL formula by interval operations with a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula by calling the real root isolation algorithm. A running example of an open quantum walk is provided to demonstrate our method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا