ﻻ يوجد ملخص باللغة العربية
We present a technique for increasing the internal quality factor of kinetic inductance detectors (KIDs) by nulling ambient magnetic fields with a properly applied magnetic field. The KIDs used in this study are made from thin-film aluminum, they are mounted inside a light-tight package made from bulk aluminum, and they are operated near $150 , mathrm{mK}$. Since the thin-film aluminum has a slightly elevated critical temperature ($T_mathrm{c} = 1.4 , mathrm{K}$), it therefore transitions before the package ($T_mathrm{c} = 1.2 , mathrm{K}$), which also serves as a magnetic shield. On cooldown, ambient magnetic fields as small as approximately $30 , mathrm{mu T}$ can produce vortices in the thin-film aluminum as it transitions because the bulk aluminum package has not yet transitioned and therefore is not yet shielding. These vortices become trapped inside the aluminum package below $1.2 , mathrm{K}$ and ultimately produce low internal quality factors in the thin-film superconducting resonators. We show that by controlling the strength of the magnetic field present when the thin film transitions, we can control the internal quality factor of the resonators. We also compare the noise performance with and without vortices present, and find no evidence for excess noise beyond the increase in amplifier noise, which is expected with increasing loss.
Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LE
We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radi
Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the Neel Iram Kids Array (NIKA) collaboration ha
Kinetic Inductance Detectors (KIDs) are superconductive low$-$temperature detectors useful for astrophysics and particle physics. We have developed arrays of lumped elements KIDs (LEKIDs) sensitive to microwave photons, optimized for the four horn-co
Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of