ترغب بنشر مسار تعليمي؟ اضغط هنا

The Minimum Halo Mass for Star Formation at z = 6 - 8

69   0   0.0 ( 0 )
 نشر من قبل Kristian Finlator
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent analysis of strongly-lensed sources in the Hubble Frontier Fields indicates that the rest-frame UV luminosity function of galaxies at $z=$6--8 rises as a power law down to $M_mathrm{UV}=-15$, and possibly as faint as -12.5. We use predictions from a cosmological radiation hydrodynamic simulation to map these luminosities onto physical space, constraining the minimum dark matter halo mass and stellar mass that the Frontier Fields probe. While previously-published theoretical studies have suggested or assumed that early star formation was suppressed in halos less massive than $10^9$--$10^{11} M_odot$, we find that recent observations demand vigorous star formation in halos at least as massive as (3.1, 5.6, 10.5)$times10^9 M_odot$ at $z=(6,7,8)$. Likewise, we find that Frontier Fields observations probe down to stellar masses of (8.1, 18, 32)$times10^6 M_odot$; that is, they are observing the likely progenitors of analogues to Local Group dwarfs such as Pegasus and M32. Our simulations yield somewhat different constraints than two complementary models that have been invoked in similar analyses, emphasizing the need for further observational constraints on the galaxy-halo connection.



قيم البحث

اقرأ أيضاً

We present ALMA observations of two moderate luminosity quasars at redshift 6. These quasars from the Canada-France High-z Quasar Survey (CFHQS) have black hole masses of ~10^8 M_solar. Both quasars are detected in the [CII] line and dust continuum. Combining these data with our previous study of two similar CFHQS quasars we investigate the population properties. We show that z>6 quasars have a significantly lower far-infrared luminosity than bolometric-luminosity-matched samples at lower redshift, inferring a lower star formation rate, possibly correlated with the lower black hole masses at z=6. The ratios of [CII] to far-infrared luminosities in the CFHQS quasars are comparable with those of starbursts of similar star formation rate in the local universe. We determine values of velocity dispersion and dynamical mass for the quasar host galaxies based on the [CII] data. We find that there is no significant offset from the relations defined by nearby galaxies with similar black hole masses. There is however a marked increase in the scatter at z=6, beyond the large observational uncertainties.
Using the VLA and ALMA, we have obtained CO(2-1), [C II], [N II] line emission and multiple dust continuum measurements in a sample of normal galaxies at $z=5-6$. We report the highest redshift detection of low-$J$ CO emission from a Lyman Break Gala xy, at $zsim5.7$. The CO line luminosity implies a massive molecular gas reservoir of $(1.3pm0.3)(alpha_{rm CO}/4.5,M_odot$ (K km s$^{-1}$ pc$^2)^{-1})times10^{11},M_odot$, suggesting low star formation efficiency, with a gas depletion timescale of order $sim$1 Gyr. This efficiency is much lower than traditionally observed in $zgtrsim5$ starbursts, indicating that star forming conditions in Main Sequence galaxies at $zsim6$ may be comparable to those of normal galaxies probed up to $zsim3$ to-date, but with rising gas fractions across the entire redshift range. We also obtain a deep CO upper limit for a Main Sequence galaxy at $zsim5.3$ with $sim3$ times lower SFR, perhaps implying a high $alpha_{rm CO}$ conversion factor, as typically found in low metallicity galaxies. For a sample including both CO targets, we also find faint [N II] 205$,mu$m emission relative to [C II] in all but the most IR-luminous normal galaxies at $z=5-6$, implying more intense or harder radiation fields in the ionized gas relative to lower redshift. These radiation properties suggest that low metallicity may be common in typical $sim$10$^{10},M_odot$ galaxies at $z=5-6$. While a fraction of Main Sequence star formation in the first billion years may take place in conditions not dissimilar to lower redshift, lower metallicity may affect the remainder of the population.
We use 3035 Herschel-SPIRE 500$mu$m sources from 20.3 sq deg of sky in the HerMES Lockman, ES1 and XMM-LSS areas to estimate the star-formation rate density at z = 1-6. 500 mu sources are associated first with 350 and 250 mu sources, and then with Sp itzer 24 mu sources from the SWIRE photometric redshift catalogue. The infrared and submillimetre data are fitted with a set of radiative-transfer templates corresponding to cirrus (quiescent) and starburst galaxies. Lensing candidates are removed via a set of colour-colour and colour-redshift constraints. Star-formation rates are found to extend from < 1 to 20,000 Mo/yr. Such high values were also seen in the all-sky IRAS Faint Source Survey. Star-formation rate functions are derived in a series of redshift bins from 0-6, combined with earlier far-infrared estimates, where available, and fitted with a Saunders et al (1990) functional form. The star-formation-rate density as a function of redshift is derived and compared with other estimates. There is reasonable agreement with both infrared and ultraviolet estimates for z < 3, but we find higher star-formation-rate densities than ultraviolet estimates at z = 3-6. Given the considerable uncertainties in the submillimetre estimates, we can not rule out the possibility that the ultraviolet estimates are correct. But the possibility that the ultraviolet estimates have seriously underestimated the contribution of dust-shrouded star-formation can also not be excluded.
ALMA [CII] line and continuum observations of five redshift z>6 quasars are presented. This sample was selected to probe lower black hole mass quasars than most previous studies. We find a wide dispersion in properties with CFHQS J0216-0455, a low-lu minosity quasar with absolute magnitude M_1450=-22.2, remaining undetected implying a limit on the star formation rate in the host galaxy of <10 solar masses per year, whereas other host galaxies have star formation rates up to hundreds of solar masses per year. Two other quasars have particularly interesting properties. VIMOS2911 is one of the least luminous z>6 quasars known with M_1450=-23.1, yet its host galaxy is experiencing a very powerful starburst. PSO J167-13 has a broad and luminous [CII] line and a neighbouring galaxy a projected distance of 5kpc away that is also detected in the [CII] line and continuum. Combining with similar observations from the literature, we study the ratio of [CII] line to far-infrared luminosity finding this ratio increases at high-redshift at a fixed far-infrared luminosity, likely due to lower dust content, lower metallicity and/or higher gas masses. We compile a sample of 21 high-redshift quasars with dynamical masses and investigate the relationship between black hole mass and dynamical mass. The new observations presented here reveal dynamical masses consistent with the relationship defined by local galaxies. However, the full sample shows a very wide scatter across the black hole mass - dynamical mass plane, whereas both the local relationship and simulations of high-redshift quasars show a much lower dispersion in dynamical mass.
549 - L. D. Bradley , A. Zitrin , D. Coe 2013
We utilize 16 band Hubble Space Telescope (HST) observations of 18 lensing clusters obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program to search for $zsim6-8$ galaxies. We report the discover y of 204, 45, and 13 Lyman-break galaxy candidates at $zsim6$, $zsim7$, and $zsim8$, respectively, identified from purely photometric redshift selections. This large sample, representing nearly an order of magnitude increase in the number of magnified star-forming galaxies at $zsim 6-8$ presented to date, is unique in that we have observations in four WFC3/UVIS UV, seven ACS/WFC optical, and all five WFC3/IR broadband filters, which enable very accurate photometric redshift selections. We construct detailed lensing models for 17 of the 18 clusters to estimate object magnifications and to identify two new multiply lensed $z gtrsim 6$ candidates. The median magnifications over the 17 clusters are 4, 4, and 5 for the $zsim6$, $zsim7$, and $zsim8$ samples, respectively, over an average area of 4.5 arcmin$^2$ per cluster. We compare our observed number counts with expectations based on convolving blank field UV luminosity functions through our cluster lens models and find rough agreement down to $sim27$ mag, where we begin to suffer significant incompleteness. In all three redshift bins, we find a higher number density at brighter observed magnitudes than the field predictions, empirically demonstrating for the first time the enhanced efficiency of lensing clusters over field surveys. Our number counts also are in general agreement with the lensed expectations from the cluster models, especially at $zsim6$, where we have the best statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا