ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kalman Decomposition for Linear Quantum Stochastic Systems

62   0   0.0 ( 0 )
 نشر من قبل Symeon Grivopoulos Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kalman decomposition for Linear Quantum Stochastic Systems in the real quadrature operator representation, that was derived indirectly in [1] by the authors, is derived here directly, using the one-sided symplectic SVD-like factorization of [2] on the observability matrix of the system.



قيم البحث

اقرأ أيضاً

The purpose of this paper is to develop a synthesis theory for linear dynamical quantum stochastic systems that are encountered in linear quantum optics and in phenomenological models of linear quantum circuits. In particular, such a theory will enab le the systematic realization of coherent/fully quantum linear stochastic controllers for quantum control, amongst other potential applications. We show how general linear dynamical quantum stochastic systems can be constructed by assembling an appropriate interconnection of one degree of freedom open quantum harmonic oscillators and, in the quantum optics setting, discuss how such a network of oscillators can be approximately synthesized or implemented in a systematic way from some linear and non-linear quantum optical elements. An example is also provided to illustrate the theory.
The purpose of this paper is to formulate and solve a H-infinity controller synthesis problem for a class of non-commutative linear stochastic systems which includes many examples of interest in quantum technology. The paper includes results on the c lass of such systems for which the quantum commutation relations are preserved (such a requirement must be satisfied in a physical quantum system). A quantum version of standard (classical) dissipativity results are presented and from this a quantum version of the Strict Bounded Real Lemma is derived. This enables a quantum version of the two Riccati solution to the H-infinity control problem to be presented. This result leads to controllers which may be realized using purely quantum, purely classical or a mixture of quantum and classical elements. This issue of physical realizability of the controller is examined in detail, and necessary and sufficient conditions are given. Our results are constructive in the sense that we provide explicit formulas for the Hamiltonian function and coupling operator corresponding to the controller.
This paper presents a model reduction method for the class of linear quantum stochastic systems often encountered in quantum optics and their related fields. The approach is proposed on the basis of an interpolatory projection ensuring that specific input-output responses of the original and the reduced-order systems are matched at multiple selected points (or frequencies). Importantly, the physical realizability property of the original quantum system imposed by the law of quantum mechanics is preserved under our tangential interpolatory projection. An error bound is established for the proposed model reduction method and an avenue to select interpolation points is proposed. A passivity preserving model reduction method is also presented. Examples of both active and passive systems are provided to illustrate the merits of our proposed approach.
167 - A. J. Shaiju , I. R. Petersen , 2008
In this paper, we formulate and solve a guaranteed cost control problem for a class of uncertain linear stochastic quantum systems. For these quantum systems, a connection with an associated classical (non-quantum) system is first established. Using this connection, the desired guaranteed cost results are established. The theory presented is illustrated using an example from quantum optics.
This paper is concerned with quadratic-exponential functionals (QEFs) as risk-sensitive performance criteria for linear quantum stochastic systems driven by multichannel bosonic fields. Such costs impose an exponential penalty on quadratic functions of the quantum system variables over a bounded time interval, and their minimization secures a number of robustness properties for the system. We use an integral operator representation of the QEF, obtained recently, in order to compute its asymptotic infinite-horizon growth rate in the invariant Gaussian state when the stable system is driven by vacuum input fields. The resulting frequency-domain formulas express the QEF growth rate in terms of two spectral functions associated with the real and imaginary parts of the quantum covariance kernel of the system variables. We also discuss the computation of the QEF growth rate using homotopy and contour integration techniques and provide two illustrations including a numerical example with a two-mode oscillator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا