ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact correlations in a single file system with a driven tracer

60   0   0.0 ( 0 )
 نشر من قبل Julien Cividini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of a single driven tracer particle in a bath of other particles performing the random average process on an infinite line using a stochastic hydrodynamics approach. We consider arbitrary fixed as well as random initial conditions and compute the two-point correlations. For quenched uniform and annealed steady state initial conditions we show that in the large time $T$ limit the fluctuations and the correlations of the positions of the particles grow subdiffusively as $sqrt{T}$ and have well defined scaling forms under proper rescaling of the labels. We compute the corresponding scaling functions exactly for these specific initial configurations and verify them numerically. We also consider a non translationally invariant initial condition with linearly increasing gaps where we show that the fluctuations and correlations grow superdiffusively as $T^{3/2}$ at large times.



قيم البحث

اقرأ أيضاً

Diffusion of impenetrable particles in a crowded one-dimensional channel is referred as the single file diffusion. The particles do not pass each other and the displacement of each individual particle is sub-diffusive. We analyse a simple realization of this single file diffusion problem where one dimensional Brownian point particles interact only by hard-core repulsion. We show that the large deviation function which characterizes the displacement of a tracer at large time can be computed via a mapping to a problem of non-interacting Brownian particles. We confirm recently obtained results of the one time distribution of the displacement and show how to extend them to the multi-time correlations. The probability distribution of the tracer position depends on whether we take annealed or quenched averages. In the quenched case we notice an exact relation between the distribution of the tracer and the distribution of the current. This relation is in fact much more general and would be valid for arbitrary single file diffusion. It allows in particular to get the full statistics of the tracer position for the symmetric simple exclusion process (SSEP) at density 1/2 in the quenched case.
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (Single File conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong inter-particle correlations developed in collective rearrangements. We consider a minimal model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) Single File picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in Single File may arrange into clusters which are continuously merging and splitting ({it active clusters}) or merely reproduce passive-motion paradigms, respectively. We show that activity convey to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
We study the effect of single biased tracer particle in a bath of other particles performing the random average process (RAP) on an infinite line. We focus on the large time behavior of the mean and the fluctuations of the positions of the particles and also the correlations among them. In the large time t limit these quantities have well-defined scaling forms and grow with time as $sqrt{t}$. A differential equation for the scaling function associated with the correlation function is obtained and solved perturbatively around the solution for a symmetric tracer. Interestingly, when the tracer is totally asymmetric, further progress is enabled by the fact that the particles behind of the tracer do not affect the motion of the particles in front of it, which leads in particular to an exact expression for the variance of the position of the tracer. Finally, the variance and correlations of the gaps between successive particles are also studied. Numerical simulations support our analytical results.
We study the statistics of a tagged particle in single-file diffusion, a one-dimensional interacting infinite-particle system in which the order of particles never changes. We compute the two-time correlation function for the displacement of the tagg ed particle for an arbitrary single-file system. We also discuss single-file analogs of the arcsine law and the law of the iterated logarithm characterizing the behavior of Brownian motion. Using a macroscopic fluctuation theory we devise a formalism giving the cumulant generating functional. In principle, this functional contains the full statistics of the tagged particle trajectory---the full single-time statistics, all multiple-time correlation functions, etc. are merely special cases.
We describe a tracer in a bath of soft Brownian colloids by a particle coupled to the density field of the other bath particles. From the Dean equation, we derive an exact equation for the evolution of the whole system, and show that the density fiel d evolution can be linearized in the limit of a dense bath. This linearized Dean equation with a tracer taken apart is validated by the reproduction of previous results on the mean-field liquid structure and transport properties. Then, the tracer is submitted to an external force and we compute the density profile around it, its mobility and its diffusion coefficient. Our results exhibit effects such as bias enhanced diffusion that are very similar to those observed in the opposite limit of a hard core lattice gas, indicating the robustness of these effects. Our predictions are successfully tested against molecular dynamics simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا