ﻻ يوجد ملخص باللغة العربية
We study the effect of a single driven tracer particle in a bath of other particles performing the random average process on an infinite line using a stochastic hydrodynamics approach. We consider arbitrary fixed as well as random initial conditions and compute the two-point correlations. For quenched uniform and annealed steady state initial conditions we show that in the large time $T$ limit the fluctuations and the correlations of the positions of the particles grow subdiffusively as $sqrt{T}$ and have well defined scaling forms under proper rescaling of the labels. We compute the corresponding scaling functions exactly for these specific initial configurations and verify them numerically. We also consider a non translationally invariant initial condition with linearly increasing gaps where we show that the fluctuations and correlations grow superdiffusively as $T^{3/2}$ at large times.
Diffusion of impenetrable particles in a crowded one-dimensional channel is referred as the single file diffusion. The particles do not pass each other and the displacement of each individual particle is sub-diffusive. We analyse a simple realization
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (Single File conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong inter-particle correlations
We study the effect of single biased tracer particle in a bath of other particles performing the random average process (RAP) on an infinite line. We focus on the large time behavior of the mean and the fluctuations of the positions of the particles
We study the statistics of a tagged particle in single-file diffusion, a one-dimensional interacting infinite-particle system in which the order of particles never changes. We compute the two-time correlation function for the displacement of the tagg
We describe a tracer in a bath of soft Brownian colloids by a particle coupled to the density field of the other bath particles. From the Dean equation, we derive an exact equation for the evolution of the whole system, and show that the density fiel