ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Transport in Presence of Bound States -- Noise Power

68   0   0.0 ( 0 )
 نشر من قبل Mihail Mintchev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The impact of bound states in Landauer-Buttiker scattering approach to non-equilibrium quantum transport is investigated. We show that the noise power at frequency $ u$ is sensitive to all bound states with energies $omega_b$ satisfying $|omega_b| < u$. We derive the exact expression of the bound state contribution and compare it to the one produced by the scattering states alone. It turns out that the bound states lead to specific modifications of both space and frequency dependence of the total noise power. The theoretical and experimental consequences of this result are discussed.



قيم البحث

اقرأ أيضاً

We study quantum transport after an inhomogeneous quantum quench in a free fermion lattice system in the presence of a localised defect. Using a new rigorous analytical approach for the calculation of large time and distance asymptotics of physical o bservables, we derive the exact profiles of particle density and current. Our analysis shows that the predictions of a semiclassical approach that has been extensively applied in similar problems match exactly with the correct asymptotics, except for possible finite distance corrections close to the defect. We generalise our formulas to an arbitrary non-interacting particle-conserving defect, expressing them in terms of its scattering properties.
We investigate the quantum transport of anyons in one space dimension. After establishing some universal features of non-equilibrium systems in contact with two heat reservoirs in a generalised Gibbs state, we focus on the abelian anyon solution of t he Tomonaga-Luttinger model possessing axial-vector duality. In this context a non-equilibrium representation of the physical observables is constructed, which is the basic tool for a systematic study of the anyon particle and heat transport. We determine the associated Lorentz number and describe explicitly the deviation from the standard Wiedemann-Franz law induced by the interaction and the anyon statistics. The quantum fluctuations generated by the electric and helical currents are investigated and the dependence of the relative noise power on the statistical parameter is established.
Weakly coupled Ising chains provide a condensed-matter realization of confinement. In these systems, kinks and antikinks bind into mesons due to an attractive interaction potential that increases linearly with the distance between the particles. Whil e single mesons have been directly observed in experiments, the role of the multiparticle continuum and bound states of mesons in the excitation spectrum is far less clear. Using time-dependent density matrix renormalization group methods, we study the dynamical structure factors of one- and two-spin operators in a transverse-field two-leg Ising ladder in the ferromagnetic phase. The propagation of time-dependent correlations and the two-spin excitation spectrum reveal the existence of interchain bound states, which are absent in the one-spin dynamical structure factor. We also identify two-meson bound states that appear at higher energies, above the thresholds of several two-meson continua.
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum fie ld theory methods and analysed in the zero frequency limit. It turns out that microscopic processes with positive, vanishing and negative entropy production occur in the system with non-vanishing probability. In spite of this fact, we show that all odd moments (in particular, the mean value of the entropy production) of the above distribution are non-negative. This result extends the second principle of thermodynamics to the quantum fluctuations of the entropy production in the Landauer-Buttiker state. The impact of the time reversal is also discussed.
We study non-equilibrium steady state transport in scale invariant quantum junctions with focus on the particle and heat fluctuations captured by the two-point current correlation functions. We show that the non-linear behavior of the particle curren t affects both the particle and heat noise. The existence of domains of enhancement and reduction of the noise power with respect to the linear regime are observed. The impact of the statistics is explored. We demonstrate that in the scale invariant case the bosonic particle noise exceeds the fermionic one in the common domain of heat bath parameters. Multi-lead configurations are also investigated and the effect of probe terminals on the noise is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا